Adaptive Detection of Rician Targets

We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2023-08, Vol.59 (4), p.4700-4708
1. Verfasser: Besson, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4708
container_issue 4
container_start_page 4700
container_title IEEE transactions on aerospace and electronic systems
container_volume 59
creator Besson, Olivier
description We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.
doi_str_mv 10.1109/TAES.2023.3234454
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04283767v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10007701</ieee_id><sourcerecordid>2847966059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCwoBcPW2fysUmOS60fUBC0nkN2m2hK7dZkW_Dfu8sW8TTM8Lwvw0PIJcIEEfTdopy9TShQNmGUcS74ERmhEDLXBbBjMgJAlWsq8JScpbTqVq44G5Gbcmm3bdi77N61rm5Ds8kan72GOthNtrDxw7XpnJx4u07u4jDH5P1htpg-5fOXx-dpOc9rRlWbF0qA9qJGUXOQXoBH1FVFqQDGl0IpoZXgiimtPOdKy0oyBwU4ViFd2oqNye3Q-2nXZhvDl40_prHBPJVz09-AU8VkIffYsdcDu43N986l1qyaXdx07xmquNRFAUJ3FA5UHZuUovN_tQimF2d6caYXZw7iuszVkAnOuX88gJSA7BeL-mUH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847966059</pqid></control><display><type>article</type><title>Adaptive Detection of Rician Targets</title><source>IEEE Electronic Library (IEL)</source><creator>Besson, Olivier</creator><creatorcontrib>Besson, Olivier</creatorcontrib><description>We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3234454</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive radar detection ; Constant false alarm rate ; constant false alarm rate (CFAR) ; Covariance matrices ; Covariance matrix ; Detectors ; Engineering Sciences ; generalized likelihood ratio test (GLRT) ; Likelihood ratio ; Logic gates ; Radar cross-sections ; Radar detection ; Random noise ; Rician channels ; Rician targets ; Signal and Image processing ; Target detection ; Training</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-08, Vol.59 (4), p.4700-4708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</citedby><cites>FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</cites><orcidid>0000-0001-6079-8446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10007701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10007701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04283767$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besson, Olivier</creatorcontrib><title>Adaptive Detection of Rician Targets</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.</description><subject>Adaptive radar detection</subject><subject>Constant false alarm rate</subject><subject>constant false alarm rate (CFAR)</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Engineering Sciences</subject><subject>generalized likelihood ratio test (GLRT)</subject><subject>Likelihood ratio</subject><subject>Logic gates</subject><subject>Radar cross-sections</subject><subject>Radar detection</subject><subject>Random noise</subject><subject>Rician channels</subject><subject>Rician targets</subject><subject>Signal and Image processing</subject><subject>Target detection</subject><subject>Training</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCwoBcPW2fysUmOS60fUBC0nkN2m2hK7dZkW_Dfu8sW8TTM8Lwvw0PIJcIEEfTdopy9TShQNmGUcS74ERmhEDLXBbBjMgJAlWsq8JScpbTqVq44G5Gbcmm3bdi77N61rm5Ds8kan72GOthNtrDxw7XpnJx4u07u4jDH5P1htpg-5fOXx-dpOc9rRlWbF0qA9qJGUXOQXoBH1FVFqQDGl0IpoZXgiimtPOdKy0oyBwU4ViFd2oqNye3Q-2nXZhvDl40_prHBPJVz09-AU8VkIffYsdcDu43N986l1qyaXdx07xmquNRFAUJ3FA5UHZuUovN_tQimF2d6caYXZw7iuszVkAnOuX88gJSA7BeL-mUH</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Besson, Olivier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6079-8446</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive Detection of Rician Targets</title><author>Besson, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive radar detection</topic><topic>Constant false alarm rate</topic><topic>constant false alarm rate (CFAR)</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Engineering Sciences</topic><topic>generalized likelihood ratio test (GLRT)</topic><topic>Likelihood ratio</topic><topic>Logic gates</topic><topic>Radar cross-sections</topic><topic>Radar detection</topic><topic>Random noise</topic><topic>Rician channels</topic><topic>Rician targets</topic><topic>Signal and Image processing</topic><topic>Target detection</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besson, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Besson, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection of Rician Targets</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>59</volume><issue>4</issue><spage>4700</spage><epage>4708</epage><pages>4700-4708</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3234454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6079-8446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2023-08, Vol.59 (4), p.4700-4708
issn 0018-9251
1557-9603
language eng
recordid cdi_hal_primary_oai_HAL_hal_04283767v1
source IEEE Electronic Library (IEL)
subjects Adaptive radar detection
Constant false alarm rate
constant false alarm rate (CFAR)
Covariance matrices
Covariance matrix
Detectors
Engineering Sciences
generalized likelihood ratio test (GLRT)
Likelihood ratio
Logic gates
Radar cross-sections
Radar detection
Random noise
Rician channels
Rician targets
Signal and Image processing
Target detection
Training
title Adaptive Detection of Rician Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20of%20Rician%20Targets&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Besson,%20Olivier&rft.date=2023-08-01&rft.volume=59&rft.issue=4&rft.spage=4700&rft.epage=4708&rft.pages=4700-4708&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3234454&rft_dat=%3Cproquest_RIE%3E2847966059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847966059&rft_id=info:pmid/&rft_ieee_id=10007701&rfr_iscdi=true