Adaptive Detection of Rician Targets
We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2023-08, Vol.59 (4), p.4700-4708 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4708 |
---|---|
container_issue | 4 |
container_start_page | 4700 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 59 |
creator | Besson, Olivier |
description | We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small. |
doi_str_mv | 10.1109/TAES.2023.3234454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04283767v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10007701</ieee_id><sourcerecordid>2847966059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCwoBcPW2fysUmOS60fUBC0nkN2m2hK7dZkW_Dfu8sW8TTM8Lwvw0PIJcIEEfTdopy9TShQNmGUcS74ERmhEDLXBbBjMgJAlWsq8JScpbTqVq44G5Gbcmm3bdi77N61rm5Ds8kan72GOthNtrDxw7XpnJx4u07u4jDH5P1htpg-5fOXx-dpOc9rRlWbF0qA9qJGUXOQXoBH1FVFqQDGl0IpoZXgiimtPOdKy0oyBwU4ViFd2oqNye3Q-2nXZhvDl40_prHBPJVz09-AU8VkIffYsdcDu43N986l1qyaXdx07xmquNRFAUJ3FA5UHZuUovN_tQimF2d6caYXZw7iuszVkAnOuX88gJSA7BeL-mUH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847966059</pqid></control><display><type>article</type><title>Adaptive Detection of Rician Targets</title><source>IEEE Electronic Library (IEL)</source><creator>Besson, Olivier</creator><creatorcontrib>Besson, Olivier</creatorcontrib><description>We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3234454</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive radar detection ; Constant false alarm rate ; constant false alarm rate (CFAR) ; Covariance matrices ; Covariance matrix ; Detectors ; Engineering Sciences ; generalized likelihood ratio test (GLRT) ; Likelihood ratio ; Logic gates ; Radar cross-sections ; Radar detection ; Random noise ; Rician channels ; Rician targets ; Signal and Image processing ; Target detection ; Training</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-08, Vol.59 (4), p.4700-4708</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</citedby><cites>FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</cites><orcidid>0000-0001-6079-8446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10007701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10007701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04283767$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Besson, Olivier</creatorcontrib><title>Adaptive Detection of Rician Targets</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.</description><subject>Adaptive radar detection</subject><subject>Constant false alarm rate</subject><subject>constant false alarm rate (CFAR)</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Engineering Sciences</subject><subject>generalized likelihood ratio test (GLRT)</subject><subject>Likelihood ratio</subject><subject>Logic gates</subject><subject>Radar cross-sections</subject><subject>Radar detection</subject><subject>Random noise</subject><subject>Rician channels</subject><subject>Rician targets</subject><subject>Signal and Image processing</subject><subject>Target detection</subject><subject>Training</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCwoBcPW2fysUmOS60fUBC0nkN2m2hK7dZkW_Dfu8sW8TTM8Lwvw0PIJcIEEfTdopy9TShQNmGUcS74ERmhEDLXBbBjMgJAlWsq8JScpbTqVq44G5Gbcmm3bdi77N61rm5Ds8kan72GOthNtrDxw7XpnJx4u07u4jDH5P1htpg-5fOXx-dpOc9rRlWbF0qA9qJGUXOQXoBH1FVFqQDGl0IpoZXgiimtPOdKy0oyBwU4ViFd2oqNye3Q-2nXZhvDl40_prHBPJVz09-AU8VkIffYsdcDu43N986l1qyaXdx07xmquNRFAUJ3FA5UHZuUovN_tQimF2d6caYXZw7iuszVkAnOuX88gJSA7BeL-mUH</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Besson, Olivier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6079-8446</orcidid></search><sort><creationdate>20230801</creationdate><title>Adaptive Detection of Rician Targets</title><author>Besson, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-68509f5c15c407f50f119bb225034d5885985483898f44897b73e060e3b12dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive radar detection</topic><topic>Constant false alarm rate</topic><topic>constant false alarm rate (CFAR)</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Engineering Sciences</topic><topic>generalized likelihood ratio test (GLRT)</topic><topic>Likelihood ratio</topic><topic>Logic gates</topic><topic>Radar cross-sections</topic><topic>Radar detection</topic><topic>Random noise</topic><topic>Rician channels</topic><topic>Rician targets</topic><topic>Signal and Image processing</topic><topic>Target detection</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besson, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Besson, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Detection of Rician Targets</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>59</volume><issue>4</issue><spage>4700</spage><epage>4708</epage><pages>4700-4708</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>We address the problem of detecting a signal of interest in Gaussian noise with an unknown covariance matrix, when the amplitude of the signal fluctuates along the observations and follows a Rice distribution. This is typical of a target that consists of one large dominant scatterer and a collection of small independent scatterers. We formulate it as a composite hypothesis testing problem, for which we derive the generalized likelihood ratio test, and show that it ensures a constant false alarm rate. Numerical simulations enable to assess its performance for Rician as well as Swerling I and III targets. It is shown that the new detector incurs no loss for Swerling targets but can offer a significant improvement for Rician targets, especially when the number of training samples is small.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3234454</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6079-8446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2023-08, Vol.59 (4), p.4700-4708 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04283767v1 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive radar detection Constant false alarm rate constant false alarm rate (CFAR) Covariance matrices Covariance matrix Detectors Engineering Sciences generalized likelihood ratio test (GLRT) Likelihood ratio Logic gates Radar cross-sections Radar detection Random noise Rician channels Rician targets Signal and Image processing Target detection Training |
title | Adaptive Detection of Rician Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Detection%20of%20Rician%20Targets&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Besson,%20Olivier&rft.date=2023-08-01&rft.volume=59&rft.issue=4&rft.spage=4700&rft.epage=4708&rft.pages=4700-4708&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3234454&rft_dat=%3Cproquest_RIE%3E2847966059%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847966059&rft_id=info:pmid/&rft_ieee_id=10007701&rfr_iscdi=true |