Robust lateral motion control of distributed drive vehicle considering long input delays
This article presents a comparative study of lateral motion controller design for distributed drive vehicle. Aiming at handling long input delays, two types of robust controllers are specifically investigated. First, a Lyapunov‐Krasovskii functional based robust controller design is proposed. Consid...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2023-03, Vol.33 (5), p.3185-3209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3209 |
---|---|
container_issue | 5 |
container_start_page | 3185 |
container_title | International journal of robust and nonlinear control |
container_volume | 33 |
creator | Li, Wei Xie, Yu Li, Yuxue Geng, Keke Nguyen, Anh‐Tu Zhu, Xiaoyuan |
description | This article presents a comparative study of lateral motion controller design for distributed drive vehicle. Aiming at handling long input delays, two types of robust controllers are specifically investigated. First, a Lyapunov‐Krasovskii functional based robust controller design is proposed. Considering input delay, the design conditions of the state‐feedback controller are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved using LMI toolbox. Second, based on the same control law, a robust predictive controller design is further presented. However, different from the Lyapunov‐Krasovskii functional based robust controller, the control gain of the proposed robust predictive controller is calculated without considering the input delay. An input delay estimator and a predictor are developed instead to reconstruct the delay‐dependent state, which is further used to generate a new feedback error. Moreover, the feasibility of this control scheme is theoretically proved. Finally, extensive co‐simulations with Carsim and Matlab/Simulink are conducted to compare the performance between these two controllers. Compared with the Lyapunov‐Krasovskii functional based robust controller, longer input delay can be handled by using the proposed robust predictive controller. |
doi_str_mv | 10.1002/rnc.6561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04278830v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775812428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-44ebf48d837acc1c3ce367d7d66df51f7e61236ebcae9fbf33cc4a3472ff55943</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAiCs4p-BMC3uhFNV9t2ssx1AlDYSh4F9J8uIysmUk62b-3teKdNzkheTic82bZJYK3CEJ8F1p5WxYlOsomCNZ1jjCpj4c7rfOqxuQ0O4txA2H_h-kke1_5posJOJF0EA5sfbK-BdK3KXgHvAHKxhRs0yWtgAp2r8Fer610ekDRKh1s-wGc7w_b7roElHbiEM-zEyNc1Be_dZq9Pdy_zhf58uXxaT5b5pJghnJKdWNopSrChJRIEqlJyRRTZalMgQzTZb9BqRspdG0aQ4iUVBDKsDFFUVMyzW7Gvmvh-C7YrQgH7oXli9mSD2-QYlZVBO5Rb69Guwv-s9Mx8Y3vQtuPxzFjRYUwxVWvrkclg48xaPPXFkE-ZMz7jPmQcU_zkX5Zpw__Or56nv_4bwE9fhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775812428</pqid></control><display><type>article</type><title>Robust lateral motion control of distributed drive vehicle considering long input delays</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Wei ; Xie, Yu ; Li, Yuxue ; Geng, Keke ; Nguyen, Anh‐Tu ; Zhu, Xiaoyuan</creator><creatorcontrib>Li, Wei ; Xie, Yu ; Li, Yuxue ; Geng, Keke ; Nguyen, Anh‐Tu ; Zhu, Xiaoyuan</creatorcontrib><description>This article presents a comparative study of lateral motion controller design for distributed drive vehicle. Aiming at handling long input delays, two types of robust controllers are specifically investigated. First, a Lyapunov‐Krasovskii functional based robust controller design is proposed. Considering input delay, the design conditions of the state‐feedback controller are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved using LMI toolbox. Second, based on the same control law, a robust predictive controller design is further presented. However, different from the Lyapunov‐Krasovskii functional based robust controller, the control gain of the proposed robust predictive controller is calculated without considering the input delay. An input delay estimator and a predictor are developed instead to reconstruct the delay‐dependent state, which is further used to generate a new feedback error. Moreover, the feasibility of this control scheme is theoretically proved. Finally, extensive co‐simulations with Carsim and Matlab/Simulink are conducted to compare the performance between these two controllers. Compared with the Lyapunov‐Krasovskii functional based robust controller, longer input delay can be handled by using the proposed robust predictive controller.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6561</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Automatic Control Engineering ; Comparative studies ; Computer Science ; Control systems design ; Control theory ; Controllers ; Delay ; distributed drive vehicle ; Feedback control ; Linear matrix inequalities ; long input delay ; Lyapunov‐Krasovskii functional ; Mathematical analysis ; Motion control ; Predictive control ; predictive controller ; Robust control ; robust lateral motion control</subject><ispartof>International journal of robust and nonlinear control, 2023-03, Vol.33 (5), p.3185-3209</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-44ebf48d837acc1c3ce367d7d66df51f7e61236ebcae9fbf33cc4a3472ff55943</citedby><cites>FETCH-LOGICAL-c3271-44ebf48d837acc1c3ce367d7d66df51f7e61236ebcae9fbf33cc4a3472ff55943</cites><orcidid>0000-0002-9636-3927 ; 0000-0001-7012-5237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6561$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6561$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://uphf.hal.science/hal-04278830$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Li, Yuxue</creatorcontrib><creatorcontrib>Geng, Keke</creatorcontrib><creatorcontrib>Nguyen, Anh‐Tu</creatorcontrib><creatorcontrib>Zhu, Xiaoyuan</creatorcontrib><title>Robust lateral motion control of distributed drive vehicle considering long input delays</title><title>International journal of robust and nonlinear control</title><description>This article presents a comparative study of lateral motion controller design for distributed drive vehicle. Aiming at handling long input delays, two types of robust controllers are specifically investigated. First, a Lyapunov‐Krasovskii functional based robust controller design is proposed. Considering input delay, the design conditions of the state‐feedback controller are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved using LMI toolbox. Second, based on the same control law, a robust predictive controller design is further presented. However, different from the Lyapunov‐Krasovskii functional based robust controller, the control gain of the proposed robust predictive controller is calculated without considering the input delay. An input delay estimator and a predictor are developed instead to reconstruct the delay‐dependent state, which is further used to generate a new feedback error. Moreover, the feasibility of this control scheme is theoretically proved. Finally, extensive co‐simulations with Carsim and Matlab/Simulink are conducted to compare the performance between these two controllers. Compared with the Lyapunov‐Krasovskii functional based robust controller, longer input delay can be handled by using the proposed robust predictive controller.</description><subject>Automatic Control Engineering</subject><subject>Comparative studies</subject><subject>Computer Science</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Delay</subject><subject>distributed drive vehicle</subject><subject>Feedback control</subject><subject>Linear matrix inequalities</subject><subject>long input delay</subject><subject>Lyapunov‐Krasovskii functional</subject><subject>Mathematical analysis</subject><subject>Motion control</subject><subject>Predictive control</subject><subject>predictive controller</subject><subject>Robust control</subject><subject>robust lateral motion control</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAiCs4p-BMC3uhFNV9t2ssx1AlDYSh4F9J8uIysmUk62b-3teKdNzkheTic82bZJYK3CEJ8F1p5WxYlOsomCNZ1jjCpj4c7rfOqxuQ0O4txA2H_h-kke1_5posJOJF0EA5sfbK-BdK3KXgHvAHKxhRs0yWtgAp2r8Fer610ekDRKh1s-wGc7w_b7roElHbiEM-zEyNc1Be_dZq9Pdy_zhf58uXxaT5b5pJghnJKdWNopSrChJRIEqlJyRRTZalMgQzTZb9BqRspdG0aQ4iUVBDKsDFFUVMyzW7Gvmvh-C7YrQgH7oXli9mSD2-QYlZVBO5Rb69Guwv-s9Mx8Y3vQtuPxzFjRYUwxVWvrkclg48xaPPXFkE-ZMz7jPmQcU_zkX5Zpw__Or56nv_4bwE9fhA</recordid><startdate>20230325</startdate><enddate>20230325</enddate><creator>Li, Wei</creator><creator>Xie, Yu</creator><creator>Li, Yuxue</creator><creator>Geng, Keke</creator><creator>Nguyen, Anh‐Tu</creator><creator>Zhu, Xiaoyuan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9636-3927</orcidid><orcidid>https://orcid.org/0000-0001-7012-5237</orcidid></search><sort><creationdate>20230325</creationdate><title>Robust lateral motion control of distributed drive vehicle considering long input delays</title><author>Li, Wei ; Xie, Yu ; Li, Yuxue ; Geng, Keke ; Nguyen, Anh‐Tu ; Zhu, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-44ebf48d837acc1c3ce367d7d66df51f7e61236ebcae9fbf33cc4a3472ff55943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic Control Engineering</topic><topic>Comparative studies</topic><topic>Computer Science</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Delay</topic><topic>distributed drive vehicle</topic><topic>Feedback control</topic><topic>Linear matrix inequalities</topic><topic>long input delay</topic><topic>Lyapunov‐Krasovskii functional</topic><topic>Mathematical analysis</topic><topic>Motion control</topic><topic>Predictive control</topic><topic>predictive controller</topic><topic>Robust control</topic><topic>robust lateral motion control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Li, Yuxue</creatorcontrib><creatorcontrib>Geng, Keke</creatorcontrib><creatorcontrib>Nguyen, Anh‐Tu</creatorcontrib><creatorcontrib>Zhu, Xiaoyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wei</au><au>Xie, Yu</au><au>Li, Yuxue</au><au>Geng, Keke</au><au>Nguyen, Anh‐Tu</au><au>Zhu, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust lateral motion control of distributed drive vehicle considering long input delays</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-03-25</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>3185</spage><epage>3209</epage><pages>3185-3209</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article presents a comparative study of lateral motion controller design for distributed drive vehicle. Aiming at handling long input delays, two types of robust controllers are specifically investigated. First, a Lyapunov‐Krasovskii functional based robust controller design is proposed. Considering input delay, the design conditions of the state‐feedback controller are derived in terms of linear matrix inequalities (LMIs), which can be effectively solved using LMI toolbox. Second, based on the same control law, a robust predictive controller design is further presented. However, different from the Lyapunov‐Krasovskii functional based robust controller, the control gain of the proposed robust predictive controller is calculated without considering the input delay. An input delay estimator and a predictor are developed instead to reconstruct the delay‐dependent state, which is further used to generate a new feedback error. Moreover, the feasibility of this control scheme is theoretically proved. Finally, extensive co‐simulations with Carsim and Matlab/Simulink are conducted to compare the performance between these two controllers. Compared with the Lyapunov‐Krasovskii functional based robust controller, longer input delay can be handled by using the proposed robust predictive controller.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rnc.6561</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9636-3927</orcidid><orcidid>https://orcid.org/0000-0001-7012-5237</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2023-03, Vol.33 (5), p.3185-3209 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04278830v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Automatic Control Engineering Comparative studies Computer Science Control systems design Control theory Controllers Delay distributed drive vehicle Feedback control Linear matrix inequalities long input delay Lyapunov‐Krasovskii functional Mathematical analysis Motion control Predictive control predictive controller Robust control robust lateral motion control |
title | Robust lateral motion control of distributed drive vehicle considering long input delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20lateral%20motion%20control%20of%20distributed%20drive%20vehicle%20considering%20long%20input%20delays&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Li,%20Wei&rft.date=2023-03-25&rft.volume=33&rft.issue=5&rft.spage=3185&rft.epage=3209&rft.pages=3185-3209&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6561&rft_dat=%3Cproquest_hal_p%3E2775812428%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775812428&rft_id=info:pmid/&rfr_iscdi=true |