Hybrid quantum states in 2D dilaton gravity

The classical black hole spacetime is modified semiclassically, depending strongly on the choice of the quantum states. In particular, for the Boulware state the spacetime often takes a wormhole structure mimicking closely a spacetime with a horizon. In this paper, in the context of the two-dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2023-12, Vol.108 (12), Article 125012
Hauptverfasser: Potaux, Yohan, Sarkar, Debajyoti, Solodukhin, Sergey N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review. D
container_volume 108
creator Potaux, Yohan
Sarkar, Debajyoti
Solodukhin, Sergey N.
description The classical black hole spacetime is modified semiclassically, depending strongly on the choice of the quantum states. In particular, for the Boulware state the spacetime often takes a wormhole structure mimicking closely a spacetime with a horizon. In this paper, in the context of the two-dimensional dilaton RST model, we consider all possible important interplays between the Hartle-Hawking, Unruh and Boulware quantum states. Special attention is given to the hybrid states made up of quantum fields either in the Hartle-Hawking or Unruh states, and some non-physical fields (with the wrong sign in the kinetic term in the action) in the Boulware state. We present a detailed analysis of the semiclassical geometry in all these cases paying attention to the presence or absence of horizons, curvature singularities and to the geodesic completeness of the spacetime. In the space of parameters specifying the generic quantum state, we find a wide domain (with dominating non-physical fields) where the semiclassical geometry represents a geodesically complete, asymptotically flat causal diamond, free of horizon or curvature singularity. However, a distant observer still finds Hawking radiation at asymptotic infinity. In the Unruh-Boulware hybrid state solution, we find that the energy flux at asymptotic infinity receives important corrections from its thermal behavior, leading to information recovery as we go from early to late retarded times. As a result, the corresponding entropy shows a typical Page curve bahavior.
doi_str_mv 10.1103/PhysRevD.108.125012
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04276956v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04276956v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-840a44e8fec1283292444103832bbfd3ef9ee301b1d033708c8f6b151e50697d3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOOaewJveirSek6RNcjk2XYWCInod0jZ1ka7Vpiv07e2o7up8_PzncPgIuUWIEIE9vO5H_2aHbYQgI6QxIL0gC8oFhABUXZ4Z4ZqsvP-CCRNQAnFB7tMx71wZ_BxN0x8Pge9Nb33gmoBug9LVpm-b4LMzg-vHG3JVmdrb1d9cko-nx_dNGmYvu-fNOgsLKmQfSg6GcysrWyCVjCrKOZ8enTDPq5LZSlnLAHMsgTEBspBVkmOMNoZEiZItyd18d29q_d25g-lG3Rqn03WmTxlwKhIVJwNOXTZ3i671vrPVeQFBn_Tofz1TIPWsh_0CMKJXNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid quantum states in 2D dilaton gravity</title><source>American Physical Society Journals</source><creator>Potaux, Yohan ; Sarkar, Debajyoti ; Solodukhin, Sergey N.</creator><creatorcontrib>Potaux, Yohan ; Sarkar, Debajyoti ; Solodukhin, Sergey N.</creatorcontrib><description>The classical black hole spacetime is modified semiclassically, depending strongly on the choice of the quantum states. In particular, for the Boulware state the spacetime often takes a wormhole structure mimicking closely a spacetime with a horizon. In this paper, in the context of the two-dimensional dilaton RST model, we consider all possible important interplays between the Hartle-Hawking, Unruh and Boulware quantum states. Special attention is given to the hybrid states made up of quantum fields either in the Hartle-Hawking or Unruh states, and some non-physical fields (with the wrong sign in the kinetic term in the action) in the Boulware state. We present a detailed analysis of the semiclassical geometry in all these cases paying attention to the presence or absence of horizons, curvature singularities and to the geodesic completeness of the spacetime. In the space of parameters specifying the generic quantum state, we find a wide domain (with dominating non-physical fields) where the semiclassical geometry represents a geodesically complete, asymptotically flat causal diamond, free of horizon or curvature singularity. However, a distant observer still finds Hawking radiation at asymptotic infinity. In the Unruh-Boulware hybrid state solution, we find that the energy flux at asymptotic infinity receives important corrections from its thermal behavior, leading to information recovery as we go from early to late retarded times. As a result, the corresponding entropy shows a typical Page curve bahavior.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.108.125012</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>General Relativity and Quantum Cosmology ; High Energy Physics - Theory ; Physics</subject><ispartof>Physical review. D, 2023-12, Vol.108 (12), Article 125012</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-840a44e8fec1283292444103832bbfd3ef9ee301b1d033708c8f6b151e50697d3</cites><orcidid>0000-0002-0286-9418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04276956$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Potaux, Yohan</creatorcontrib><creatorcontrib>Sarkar, Debajyoti</creatorcontrib><creatorcontrib>Solodukhin, Sergey N.</creatorcontrib><title>Hybrid quantum states in 2D dilaton gravity</title><title>Physical review. D</title><description>The classical black hole spacetime is modified semiclassically, depending strongly on the choice of the quantum states. In particular, for the Boulware state the spacetime often takes a wormhole structure mimicking closely a spacetime with a horizon. In this paper, in the context of the two-dimensional dilaton RST model, we consider all possible important interplays between the Hartle-Hawking, Unruh and Boulware quantum states. Special attention is given to the hybrid states made up of quantum fields either in the Hartle-Hawking or Unruh states, and some non-physical fields (with the wrong sign in the kinetic term in the action) in the Boulware state. We present a detailed analysis of the semiclassical geometry in all these cases paying attention to the presence or absence of horizons, curvature singularities and to the geodesic completeness of the spacetime. In the space of parameters specifying the generic quantum state, we find a wide domain (with dominating non-physical fields) where the semiclassical geometry represents a geodesically complete, asymptotically flat causal diamond, free of horizon or curvature singularity. However, a distant observer still finds Hawking radiation at asymptotic infinity. In the Unruh-Boulware hybrid state solution, we find that the energy flux at asymptotic infinity receives important corrections from its thermal behavior, leading to information recovery as we go from early to late retarded times. As a result, the corresponding entropy shows a typical Page curve bahavior.</description><subject>General Relativity and Quantum Cosmology</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOOaewJveirSek6RNcjk2XYWCInod0jZ1ka7Vpiv07e2o7up8_PzncPgIuUWIEIE9vO5H_2aHbYQgI6QxIL0gC8oFhABUXZ4Z4ZqsvP-CCRNQAnFB7tMx71wZ_BxN0x8Pge9Nb33gmoBug9LVpm-b4LMzg-vHG3JVmdrb1d9cko-nx_dNGmYvu-fNOgsLKmQfSg6GcysrWyCVjCrKOZ8enTDPq5LZSlnLAHMsgTEBspBVkmOMNoZEiZItyd18d29q_d25g-lG3Rqn03WmTxlwKhIVJwNOXTZ3i671vrPVeQFBn_Tofz1TIPWsh_0CMKJXNw</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Potaux, Yohan</creator><creator>Sarkar, Debajyoti</creator><creator>Solodukhin, Sergey N.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0286-9418</orcidid></search><sort><creationdate>20231219</creationdate><title>Hybrid quantum states in 2D dilaton gravity</title><author>Potaux, Yohan ; Sarkar, Debajyoti ; Solodukhin, Sergey N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-840a44e8fec1283292444103832bbfd3ef9ee301b1d033708c8f6b151e50697d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>General Relativity and Quantum Cosmology</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potaux, Yohan</creatorcontrib><creatorcontrib>Sarkar, Debajyoti</creatorcontrib><creatorcontrib>Solodukhin, Sergey N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potaux, Yohan</au><au>Sarkar, Debajyoti</au><au>Solodukhin, Sergey N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum states in 2D dilaton gravity</atitle><jtitle>Physical review. D</jtitle><date>2023-12-19</date><risdate>2023</risdate><volume>108</volume><issue>12</issue><artnum>125012</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The classical black hole spacetime is modified semiclassically, depending strongly on the choice of the quantum states. In particular, for the Boulware state the spacetime often takes a wormhole structure mimicking closely a spacetime with a horizon. In this paper, in the context of the two-dimensional dilaton RST model, we consider all possible important interplays between the Hartle-Hawking, Unruh and Boulware quantum states. Special attention is given to the hybrid states made up of quantum fields either in the Hartle-Hawking or Unruh states, and some non-physical fields (with the wrong sign in the kinetic term in the action) in the Boulware state. We present a detailed analysis of the semiclassical geometry in all these cases paying attention to the presence or absence of horizons, curvature singularities and to the geodesic completeness of the spacetime. In the space of parameters specifying the generic quantum state, we find a wide domain (with dominating non-physical fields) where the semiclassical geometry represents a geodesically complete, asymptotically flat causal diamond, free of horizon or curvature singularity. However, a distant observer still finds Hawking radiation at asymptotic infinity. In the Unruh-Boulware hybrid state solution, we find that the energy flux at asymptotic infinity receives important corrections from its thermal behavior, leading to information recovery as we go from early to late retarded times. As a result, the corresponding entropy shows a typical Page curve bahavior.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevD.108.125012</doi><orcidid>https://orcid.org/0000-0002-0286-9418</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2023-12, Vol.108 (12), Article 125012
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_04276956v1
source American Physical Society Journals
subjects General Relativity and Quantum Cosmology
High Energy Physics - Theory
Physics
title Hybrid quantum states in 2D dilaton gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum%20states%20in%202D%20dilaton%20gravity&rft.jtitle=Physical%20review.%20D&rft.au=Potaux,%20Yohan&rft.date=2023-12-19&rft.volume=108&rft.issue=12&rft.artnum=125012&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.108.125012&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04276956v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true