A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles

A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framewor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wave motion 2023-08, Vol.121, p.103171, Article 103171
Hauptverfasser: de Reboul, Silouane, Perrey-Debain, Emmanuel, Zerbib, Nicolas, Moreau, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103171
container_title Wave motion
container_volume 121
creator de Reboul, Silouane
Perrey-Debain, Emmanuel
Zerbib, Nicolas
Moreau, Stéphane
description A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity. •A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.
doi_str_mv 10.1016/j.wavemoti.2023.103171
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04276133v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212523000574</els_id><sourcerecordid>oai_HAL_hal_04276133v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QbJ1MTWPeXVnqY8KBTcK7kImubEpM5OapJX-ezOMunWVcO75zuUehK4pmVFCy9vt7EseoHPRzhhhPImcVvQETWhd1VnO-fspmiRjkTHKinN0EcKWEEIrPp-guMDsHhsPn3vo1RFr10nbY2N7GwFDCx30ERvnu30ro3X98MfBtQfbf-C4ATwsxwkfp4kdxJ2HkPIAO4O9i2mW3K4JUaoWwiU6M7INcPXzTtHb48PrcpWtX56el4t1pvg8j5mpy1zNuWwMYVVVcKA1UZoUWtdaFrVmuilUA7SAgps5NFJD0zBdKtbomuWST9HNmLuRrdh520l_FE5asVqsxaCRnFUl5fxAk7ccvcq7EDyYP4ASMfQstuK3ZzH0LMaeE3g3gpAuOVjwIig73K6tBxWFdva_iG85e40I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>de Reboul, Silouane ; Perrey-Debain, Emmanuel ; Zerbib, Nicolas ; Moreau, Stéphane</creator><creatorcontrib>de Reboul, Silouane ; Perrey-Debain, Emmanuel ; Zerbib, Nicolas ; Moreau, Stéphane</creatorcontrib><description>A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity. •A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2023.103171</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; Engineering Sciences ; Finite element method ; Frequency domain ; Frequency scattering boundary condition ; Rotating obstacles ; Rotating source</subject><ispartof>Wave motion, 2023-08, Vol.121, p.103171, Article 103171</ispartof><rights>2023 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</citedby><cites>FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</cites><orcidid>0000-0002-8087-2655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2023.103171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04276133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Reboul, Silouane</creatorcontrib><creatorcontrib>Perrey-Debain, Emmanuel</creatorcontrib><creatorcontrib>Zerbib, Nicolas</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><title>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</title><title>Wave motion</title><description>A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity. •A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Frequency domain</subject><subject>Frequency scattering boundary condition</subject><subject>Rotating obstacles</subject><subject>Rotating source</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QbJ1MTWPeXVnqY8KBTcK7kImubEpM5OapJX-ezOMunWVcO75zuUehK4pmVFCy9vt7EseoHPRzhhhPImcVvQETWhd1VnO-fspmiRjkTHKinN0EcKWEEIrPp-guMDsHhsPn3vo1RFr10nbY2N7GwFDCx30ERvnu30ro3X98MfBtQfbf-C4ATwsxwkfp4kdxJ2HkPIAO4O9i2mW3K4JUaoWwiU6M7INcPXzTtHb48PrcpWtX56el4t1pvg8j5mpy1zNuWwMYVVVcKA1UZoUWtdaFrVmuilUA7SAgps5NFJD0zBdKtbomuWST9HNmLuRrdh520l_FE5asVqsxaCRnFUl5fxAk7ccvcq7EDyYP4ASMfQstuK3ZzH0LMaeE3g3gpAuOVjwIig73K6tBxWFdva_iG85e40I</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>de Reboul, Silouane</creator><creator>Perrey-Debain, Emmanuel</creator><creator>Zerbib, Nicolas</creator><creator>Moreau, Stéphane</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8087-2655</orcidid></search><sort><creationdate>202308</creationdate><title>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</title><author>de Reboul, Silouane ; Perrey-Debain, Emmanuel ; Zerbib, Nicolas ; Moreau, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Frequency domain</topic><topic>Frequency scattering boundary condition</topic><topic>Rotating obstacles</topic><topic>Rotating source</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Reboul, Silouane</creatorcontrib><creatorcontrib>Perrey-Debain, Emmanuel</creatorcontrib><creatorcontrib>Zerbib, Nicolas</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Reboul, Silouane</au><au>Perrey-Debain, Emmanuel</au><au>Zerbib, Nicolas</au><au>Moreau, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</atitle><jtitle>Wave motion</jtitle><date>2023-08</date><risdate>2023</risdate><volume>121</volume><spage>103171</spage><pages>103171-</pages><artnum>103171</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity. •A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2023.103171</doi><orcidid>https://orcid.org/0000-0002-8087-2655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2023-08, Vol.121, p.103171, Article 103171
issn 0165-2125
1878-433X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04276133v1
source ScienceDirect Journals (5 years ago - present)
subjects Acoustics
Engineering Sciences
Finite element method
Frequency domain
Frequency scattering boundary condition
Rotating obstacles
Rotating source
title A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202D%20frequency%20domain%20finite%20element%20formulation%20for%20solving%20the%20wave%20equation%20in%20the%20presence%20of%20rotating%20obstacles&rft.jtitle=Wave%20motion&rft.au=de%20Reboul,%20Silouane&rft.date=2023-08&rft.volume=121&rft.spage=103171&rft.pages=103171-&rft.artnum=103171&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2023.103171&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04276133v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165212523000574&rfr_iscdi=true