A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles
A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framewor...
Gespeichert in:
Veröffentlicht in: | Wave motion 2023-08, Vol.121, p.103171, Article 103171 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103171 |
container_title | Wave motion |
container_volume | 121 |
creator | de Reboul, Silouane Perrey-Debain, Emmanuel Zerbib, Nicolas Moreau, Stéphane |
description | A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity.
•A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases. |
doi_str_mv | 10.1016/j.wavemoti.2023.103171 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04276133v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212523000574</els_id><sourcerecordid>oai_HAL_hal_04276133v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QbJ1MTWPeXVnqY8KBTcK7kImubEpM5OapJX-ezOMunWVcO75zuUehK4pmVFCy9vt7EseoHPRzhhhPImcVvQETWhd1VnO-fspmiRjkTHKinN0EcKWEEIrPp-guMDsHhsPn3vo1RFr10nbY2N7GwFDCx30ERvnu30ro3X98MfBtQfbf-C4ATwsxwkfp4kdxJ2HkPIAO4O9i2mW3K4JUaoWwiU6M7INcPXzTtHb48PrcpWtX56el4t1pvg8j5mpy1zNuWwMYVVVcKA1UZoUWtdaFrVmuilUA7SAgps5NFJD0zBdKtbomuWST9HNmLuRrdh520l_FE5asVqsxaCRnFUl5fxAk7ccvcq7EDyYP4ASMfQstuK3ZzH0LMaeE3g3gpAuOVjwIig73K6tBxWFdva_iG85e40I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>de Reboul, Silouane ; Perrey-Debain, Emmanuel ; Zerbib, Nicolas ; Moreau, Stéphane</creator><creatorcontrib>de Reboul, Silouane ; Perrey-Debain, Emmanuel ; Zerbib, Nicolas ; Moreau, Stéphane</creatorcontrib><description>A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity.
•A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2023.103171</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustics ; Engineering Sciences ; Finite element method ; Frequency domain ; Frequency scattering boundary condition ; Rotating obstacles ; Rotating source</subject><ispartof>Wave motion, 2023-08, Vol.121, p.103171, Article 103171</ispartof><rights>2023 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</citedby><cites>FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</cites><orcidid>0000-0002-8087-2655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2023.103171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04276133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Reboul, Silouane</creatorcontrib><creatorcontrib>Perrey-Debain, Emmanuel</creatorcontrib><creatorcontrib>Zerbib, Nicolas</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><title>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</title><title>Wave motion</title><description>A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity.
•A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Frequency domain</subject><subject>Frequency scattering boundary condition</subject><subject>Rotating obstacles</subject><subject>Rotating source</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QbJ1MTWPeXVnqY8KBTcK7kImubEpM5OapJX-ezOMunWVcO75zuUehK4pmVFCy9vt7EseoHPRzhhhPImcVvQETWhd1VnO-fspmiRjkTHKinN0EcKWEEIrPp-guMDsHhsPn3vo1RFr10nbY2N7GwFDCx30ERvnu30ro3X98MfBtQfbf-C4ATwsxwkfp4kdxJ2HkPIAO4O9i2mW3K4JUaoWwiU6M7INcPXzTtHb48PrcpWtX56el4t1pvg8j5mpy1zNuWwMYVVVcKA1UZoUWtdaFrVmuilUA7SAgps5NFJD0zBdKtbomuWST9HNmLuRrdh520l_FE5asVqsxaCRnFUl5fxAk7ccvcq7EDyYP4ASMfQstuK3ZzH0LMaeE3g3gpAuOVjwIig73K6tBxWFdva_iG85e40I</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>de Reboul, Silouane</creator><creator>Perrey-Debain, Emmanuel</creator><creator>Zerbib, Nicolas</creator><creator>Moreau, Stéphane</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8087-2655</orcidid></search><sort><creationdate>202308</creationdate><title>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</title><author>de Reboul, Silouane ; Perrey-Debain, Emmanuel ; Zerbib, Nicolas ; Moreau, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f864c93abf027753e180cd05dd8da58d2db5cbe15e53f9ebadebb2d6c2bd824a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Frequency domain</topic><topic>Frequency scattering boundary condition</topic><topic>Rotating obstacles</topic><topic>Rotating source</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Reboul, Silouane</creatorcontrib><creatorcontrib>Perrey-Debain, Emmanuel</creatorcontrib><creatorcontrib>Zerbib, Nicolas</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Reboul, Silouane</au><au>Perrey-Debain, Emmanuel</au><au>Zerbib, Nicolas</au><au>Moreau, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles</atitle><jtitle>Wave motion</jtitle><date>2023-08</date><risdate>2023</risdate><volume>121</volume><spage>103171</spage><pages>103171-</pages><artnum>103171</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>A numerical method is presented to solve the propagation of sound waves in a two-dimensional domain in the presence of rotating obstacles without flow. It relies on a domain decomposition whereby rotating components are all embedded in a circular domain and the Arbitrary Lagrangian Eulerian framework which consists in writing the wave equation in the rotating reference frame. The transmission conditions at the interface between both domains is accomplished via the Frequency Scattering Boundary Conditions which, after classical discretization with the Finite Element Method (FEM), give rise to a series of coupled problems associated with a discrete set of frequencies. The performances of the method are demonstrated through several test cases of increasing complexity.
•A numerical method to solve wave propagation in a rotating domain is presented.•The global system may be solved with classical frequency domain solver.•It involves a frequency coupling between the fixed and rotating domain.•The performances of the method are demonstrated through several test cases.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2023.103171</doi><orcidid>https://orcid.org/0000-0002-8087-2655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-2125 |
ispartof | Wave motion, 2023-08, Vol.121, p.103171, Article 103171 |
issn | 0165-2125 1878-433X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04276133v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Acoustics Engineering Sciences Finite element method Frequency domain Frequency scattering boundary condition Rotating obstacles Rotating source |
title | A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202D%20frequency%20domain%20finite%20element%20formulation%20for%20solving%20the%20wave%20equation%20in%20the%20presence%20of%20rotating%20obstacles&rft.jtitle=Wave%20motion&rft.au=de%20Reboul,%20Silouane&rft.date=2023-08&rft.volume=121&rft.spage=103171&rft.pages=103171-&rft.artnum=103171&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2023.103171&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04276133v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165212523000574&rfr_iscdi=true |