Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait‐based approach

The advent of high‐throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2023-12, Vol.25 (12), p.3406-3422
Hauptverfasser: Monjot, Arthur, Bronner, Gisèle, Courtine, Damien, Cruaud, Corinne, Da Silva, Corinne, Aury, Jean‐Marc, Gavory, Frederick, Moné, Anne, Vellet, Agnès, Wawrzyniak, Ivan, Colombet, Jonathan, Billard, Hermine, Debroas, Didier, Lepère, Cécile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3422
container_issue 12
container_start_page 3406
container_title Environmental microbiology
container_volume 25
creator Monjot, Arthur
Bronner, Gisèle
Courtine, Damien
Cruaud, Corinne
Da Silva, Corinne
Aury, Jean‐Marc
Gavory, Frederick
Moné, Anne
Vellet, Agnès
Wawrzyniak, Ivan
Colombet, Jonathan
Billard, Hermine
Debroas, Didier
Lepère, Cécile
description The advent of high‐throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho‐physio‐phenological traits‐based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over‐expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over‐expressing photosynthesis‐, endocytosis‐ and phagosome‐linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non‐phagotrophic phytoplankton. Functional diversity of understudied freshwater microbial eukaryotes was investigated with an original approach which couples a trait‐based methodology and a metatranscriptomic analysis. Expressed functions and ecological strategies of microbial eukaryotes were studied for the first time in relation to oxygen presence/absence, periods and size fractions in a model meromictic lake.
doi_str_mv 10.1111/1462-2920.16531
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04273967v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903303366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-eae32365c96467cd42bd64b18741632d121ca886a73bfe99c697aef8b860a7863</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEoqVw5oYscYHD0vhP7JhbtWpppUVc4GxNnAl1m8TBdlrtDYkX4Bl5EhxS9sAFy5I9n38zHvsripe0fEfzOKVCsg3TLIey4vRRcXxQHh_2lB0Vz2K8KUuquCqfFkdcaSpFJY-LHxfzaJPzI_SkdXcYokt74jsyOBt847KM8y2EvU8YiRsJkAGDz6fJWdLDLb4nWz9PvRu_kgbTPeKYiQQpwBhtcFNaYAJjm1Oz6NKv7z8biJjjaQoe7PXz4kkHfcQXD-tJ8eXi_PP2crP79OFqe7bbWCEk3SAgZ1xWVkshlW0Fa1opGlorQSVnLWXUQl1LULzpUGsrtQLs6qaWJaha8pPi7Vr3GnozBTfkZxkPzlye7cyilYIprqW6o5l9s7K5xW8zxmQGFy32PYzo52hYXVcV14rqjL7-B73xc8gfmildcp6nXC4_Xan8rTEG7A4d0NIsXprFLbM4Z_54mTNePdSdmwHbA__XvAxUK3Dvetz_r545_3i1Fv4N9rWpyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903303366</pqid></control><display><type>article</type><title>Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait‐based approach</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Monjot, Arthur ; Bronner, Gisèle ; Courtine, Damien ; Cruaud, Corinne ; Da Silva, Corinne ; Aury, Jean‐Marc ; Gavory, Frederick ; Moné, Anne ; Vellet, Agnès ; Wawrzyniak, Ivan ; Colombet, Jonathan ; Billard, Hermine ; Debroas, Didier ; Lepère, Cécile</creator><creatorcontrib>Monjot, Arthur ; Bronner, Gisèle ; Courtine, Damien ; Cruaud, Corinne ; Da Silva, Corinne ; Aury, Jean‐Marc ; Gavory, Frederick ; Moné, Anne ; Vellet, Agnès ; Wawrzyniak, Ivan ; Colombet, Jonathan ; Billard, Hermine ; Debroas, Didier ; Lepère, Cécile</creatorcontrib><description>The advent of high‐throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho‐physio‐phenological traits‐based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over‐expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over‐expressing photosynthesis‐, endocytosis‐ and phagosome‐linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non‐phagotrophic phytoplankton. Functional diversity of understudied freshwater microbial eukaryotes was investigated with an original approach which couples a trait‐based methodology and a metatranscriptomic analysis. Expressed functions and ecological strategies of microbial eukaryotes were studied for the first time in relation to oxygen presence/absence, periods and size fractions in a model meromictic lake.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16531</identifier><identifier>PMID: 37916456</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aquatic ecosystems ; Biodiversity and Ecology ; Ecosystem ; Ecosystems ; Endocytosis ; Environmental Sciences ; Eukaryota ; Eukaryotes ; Food Chain ; Food chains ; Food webs ; Freshwater ; Freshwater ecosystems ; Functional groups ; Fungi ; Fungi - genetics ; Gene expression ; Genes ; Inland water environment ; Lakes - microbiology ; Life Sciences ; Meromictic lakes ; Metabolism ; Microbiology and Parasitology ; Microorganisms ; Mixolimnion ; Monimolimnion ; Organic matter ; Parasites ; Particulate organic matter ; Photosynthesis ; Phototaxis ; Phytoplankton ; Seasonal variation ; Seasonal variations ; Sulfur ; Sulphur ; Water mixing</subject><ispartof>Environmental microbiology, 2023-12, Vol.25 (12), p.3406-3422</ispartof><rights>2023 Applied Microbiology International and John Wiley &amp; Sons Ltd.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-eae32365c96467cd42bd64b18741632d121ca886a73bfe99c697aef8b860a7863</citedby><cites>FETCH-LOGICAL-c4461-eae32365c96467cd42bd64b18741632d121ca886a73bfe99c697aef8b860a7863</cites><orcidid>0000-0002-9915-1268 ; 0000-0003-1718-3010 ; 0000-0003-1534-5725 ; 0000-0002-8686-703X ; 0000-0002-4863-4518 ; 0000-0003-4767-0477 ; 0000-0002-5362-6117 ; 0000-0002-4752-7278 ; 0000-0002-6978-4785 ; 0000-0002-7618-7831 ; 0000-0002-9162-0111 ; 0000-0003-3763-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.16531$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.16531$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37916456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04273967$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Monjot, Arthur</creatorcontrib><creatorcontrib>Bronner, Gisèle</creatorcontrib><creatorcontrib>Courtine, Damien</creatorcontrib><creatorcontrib>Cruaud, Corinne</creatorcontrib><creatorcontrib>Da Silva, Corinne</creatorcontrib><creatorcontrib>Aury, Jean‐Marc</creatorcontrib><creatorcontrib>Gavory, Frederick</creatorcontrib><creatorcontrib>Moné, Anne</creatorcontrib><creatorcontrib>Vellet, Agnès</creatorcontrib><creatorcontrib>Wawrzyniak, Ivan</creatorcontrib><creatorcontrib>Colombet, Jonathan</creatorcontrib><creatorcontrib>Billard, Hermine</creatorcontrib><creatorcontrib>Debroas, Didier</creatorcontrib><creatorcontrib>Lepère, Cécile</creatorcontrib><title>Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait‐based approach</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>The advent of high‐throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho‐physio‐phenological traits‐based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over‐expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over‐expressing photosynthesis‐, endocytosis‐ and phagosome‐linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non‐phagotrophic phytoplankton. Functional diversity of understudied freshwater microbial eukaryotes was investigated with an original approach which couples a trait‐based methodology and a metatranscriptomic analysis. Expressed functions and ecological strategies of microbial eukaryotes were studied for the first time in relation to oxygen presence/absence, periods and size fractions in a model meromictic lake.</description><subject>Aquatic ecosystems</subject><subject>Biodiversity and Ecology</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Endocytosis</subject><subject>Environmental Sciences</subject><subject>Eukaryota</subject><subject>Eukaryotes</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Freshwater</subject><subject>Freshwater ecosystems</subject><subject>Functional groups</subject><subject>Fungi</subject><subject>Fungi - genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Inland water environment</subject><subject>Lakes - microbiology</subject><subject>Life Sciences</subject><subject>Meromictic lakes</subject><subject>Metabolism</subject><subject>Microbiology and Parasitology</subject><subject>Microorganisms</subject><subject>Mixolimnion</subject><subject>Monimolimnion</subject><subject>Organic matter</subject><subject>Parasites</subject><subject>Particulate organic matter</subject><subject>Photosynthesis</subject><subject>Phototaxis</subject><subject>Phytoplankton</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>Water mixing</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiMEoqVw5oYscYHD0vhP7JhbtWpppUVc4GxNnAl1m8TBdlrtDYkX4Bl5EhxS9sAFy5I9n38zHvsripe0fEfzOKVCsg3TLIey4vRRcXxQHh_2lB0Vz2K8KUuquCqfFkdcaSpFJY-LHxfzaJPzI_SkdXcYokt74jsyOBt847KM8y2EvU8YiRsJkAGDz6fJWdLDLb4nWz9PvRu_kgbTPeKYiQQpwBhtcFNaYAJjm1Oz6NKv7z8biJjjaQoe7PXz4kkHfcQXD-tJ8eXi_PP2crP79OFqe7bbWCEk3SAgZ1xWVkshlW0Fa1opGlorQSVnLWXUQl1LULzpUGsrtQLs6qaWJaha8pPi7Vr3GnozBTfkZxkPzlye7cyilYIprqW6o5l9s7K5xW8zxmQGFy32PYzo52hYXVcV14rqjL7-B73xc8gfmildcp6nXC4_Xan8rTEG7A4d0NIsXprFLbM4Z_54mTNePdSdmwHbA__XvAxUK3Dvetz_r545_3i1Fv4N9rWpyw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Monjot, Arthur</creator><creator>Bronner, Gisèle</creator><creator>Courtine, Damien</creator><creator>Cruaud, Corinne</creator><creator>Da Silva, Corinne</creator><creator>Aury, Jean‐Marc</creator><creator>Gavory, Frederick</creator><creator>Moné, Anne</creator><creator>Vellet, Agnès</creator><creator>Wawrzyniak, Ivan</creator><creator>Colombet, Jonathan</creator><creator>Billard, Hermine</creator><creator>Debroas, Didier</creator><creator>Lepère, Cécile</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Society for Applied Microbiology and Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9915-1268</orcidid><orcidid>https://orcid.org/0000-0003-1718-3010</orcidid><orcidid>https://orcid.org/0000-0003-1534-5725</orcidid><orcidid>https://orcid.org/0000-0002-8686-703X</orcidid><orcidid>https://orcid.org/0000-0002-4863-4518</orcidid><orcidid>https://orcid.org/0000-0003-4767-0477</orcidid><orcidid>https://orcid.org/0000-0002-5362-6117</orcidid><orcidid>https://orcid.org/0000-0002-4752-7278</orcidid><orcidid>https://orcid.org/0000-0002-6978-4785</orcidid><orcidid>https://orcid.org/0000-0002-7618-7831</orcidid><orcidid>https://orcid.org/0000-0002-9162-0111</orcidid><orcidid>https://orcid.org/0000-0003-3763-6566</orcidid></search><sort><creationdate>202312</creationdate><title>Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait‐based approach</title><author>Monjot, Arthur ; Bronner, Gisèle ; Courtine, Damien ; Cruaud, Corinne ; Da Silva, Corinne ; Aury, Jean‐Marc ; Gavory, Frederick ; Moné, Anne ; Vellet, Agnès ; Wawrzyniak, Ivan ; Colombet, Jonathan ; Billard, Hermine ; Debroas, Didier ; Lepère, Cécile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-eae32365c96467cd42bd64b18741632d121ca886a73bfe99c697aef8b860a7863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic ecosystems</topic><topic>Biodiversity and Ecology</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Endocytosis</topic><topic>Environmental Sciences</topic><topic>Eukaryota</topic><topic>Eukaryotes</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Freshwater</topic><topic>Freshwater ecosystems</topic><topic>Functional groups</topic><topic>Fungi</topic><topic>Fungi - genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Inland water environment</topic><topic>Lakes - microbiology</topic><topic>Life Sciences</topic><topic>Meromictic lakes</topic><topic>Metabolism</topic><topic>Microbiology and Parasitology</topic><topic>Microorganisms</topic><topic>Mixolimnion</topic><topic>Monimolimnion</topic><topic>Organic matter</topic><topic>Parasites</topic><topic>Particulate organic matter</topic><topic>Photosynthesis</topic><topic>Phototaxis</topic><topic>Phytoplankton</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>Water mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monjot, Arthur</creatorcontrib><creatorcontrib>Bronner, Gisèle</creatorcontrib><creatorcontrib>Courtine, Damien</creatorcontrib><creatorcontrib>Cruaud, Corinne</creatorcontrib><creatorcontrib>Da Silva, Corinne</creatorcontrib><creatorcontrib>Aury, Jean‐Marc</creatorcontrib><creatorcontrib>Gavory, Frederick</creatorcontrib><creatorcontrib>Moné, Anne</creatorcontrib><creatorcontrib>Vellet, Agnès</creatorcontrib><creatorcontrib>Wawrzyniak, Ivan</creatorcontrib><creatorcontrib>Colombet, Jonathan</creatorcontrib><creatorcontrib>Billard, Hermine</creatorcontrib><creatorcontrib>Debroas, Didier</creatorcontrib><creatorcontrib>Lepère, Cécile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monjot, Arthur</au><au>Bronner, Gisèle</au><au>Courtine, Damien</au><au>Cruaud, Corinne</au><au>Da Silva, Corinne</au><au>Aury, Jean‐Marc</au><au>Gavory, Frederick</au><au>Moné, Anne</au><au>Vellet, Agnès</au><au>Wawrzyniak, Ivan</au><au>Colombet, Jonathan</au><au>Billard, Hermine</au><au>Debroas, Didier</au><au>Lepère, Cécile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait‐based approach</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2023-12</date><risdate>2023</risdate><volume>25</volume><issue>12</issue><spage>3406</spage><epage>3422</epage><pages>3406-3422</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>The advent of high‐throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho‐physio‐phenological traits‐based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over‐expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over‐expressing photosynthesis‐, endocytosis‐ and phagosome‐linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non‐phagotrophic phytoplankton. Functional diversity of understudied freshwater microbial eukaryotes was investigated with an original approach which couples a trait‐based methodology and a metatranscriptomic analysis. Expressed functions and ecological strategies of microbial eukaryotes were studied for the first time in relation to oxygen presence/absence, periods and size fractions in a model meromictic lake.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37916456</pmid><doi>10.1111/1462-2920.16531</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9915-1268</orcidid><orcidid>https://orcid.org/0000-0003-1718-3010</orcidid><orcidid>https://orcid.org/0000-0003-1534-5725</orcidid><orcidid>https://orcid.org/0000-0002-8686-703X</orcidid><orcidid>https://orcid.org/0000-0002-4863-4518</orcidid><orcidid>https://orcid.org/0000-0003-4767-0477</orcidid><orcidid>https://orcid.org/0000-0002-5362-6117</orcidid><orcidid>https://orcid.org/0000-0002-4752-7278</orcidid><orcidid>https://orcid.org/0000-0002-6978-4785</orcidid><orcidid>https://orcid.org/0000-0002-7618-7831</orcidid><orcidid>https://orcid.org/0000-0002-9162-0111</orcidid><orcidid>https://orcid.org/0000-0003-3763-6566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2023-12, Vol.25 (12), p.3406-3422
issn 1462-2912
1462-2920
language eng
recordid cdi_hal_primary_oai_HAL_hal_04273967v1
source MEDLINE; Wiley Online Library All Journals
subjects Aquatic ecosystems
Biodiversity and Ecology
Ecosystem
Ecosystems
Endocytosis
Environmental Sciences
Eukaryota
Eukaryotes
Food Chain
Food chains
Food webs
Freshwater
Freshwater ecosystems
Functional groups
Fungi
Fungi - genetics
Gene expression
Genes
Inland water environment
Lakes - microbiology
Life Sciences
Meromictic lakes
Metabolism
Microbiology and Parasitology
Microorganisms
Mixolimnion
Monimolimnion
Organic matter
Parasites
Particulate organic matter
Photosynthesis
Phototaxis
Phytoplankton
Seasonal variation
Seasonal variations
Sulfur
Sulphur
Water mixing
title Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait‐based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20diversity%20of%20microbial%20eukaryotes%20in%20a%20meromictic%20lake:%20Coupling%20between%20metatranscriptomic%20and%20a%20trait%E2%80%90based%20approach&rft.jtitle=Environmental%20microbiology&rft.au=Monjot,%20Arthur&rft.date=2023-12&rft.volume=25&rft.issue=12&rft.spage=3406&rft.epage=3422&rft.pages=3406-3422&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16531&rft_dat=%3Cproquest_hal_p%3E2903303366%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903303366&rft_id=info:pmid/37916456&rfr_iscdi=true