Lexicographic agreeing to disagree and perfect equilibrium

Aumann’s seminal agreement theorem deals with the impossibility for agents to acknowledge their distinct posterior beliefs. We consider agreeing to disagree in an extended framework with lexicographic probability systems. A weak agreement theorem in the sense of identical posteriors only at the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics 2023-12, Vol.109, p.102908, Article 102908
Hauptverfasser: Bach, Christian W., Cabessa, Jérémie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102908
container_title Journal of mathematical economics
container_volume 109
creator Bach, Christian W.
Cabessa, Jérémie
description Aumann’s seminal agreement theorem deals with the impossibility for agents to acknowledge their distinct posterior beliefs. We consider agreeing to disagree in an extended framework with lexicographic probability systems. A weak agreement theorem in the sense of identical posteriors only at the first lexicographic level obtains. Somewhat surprisingly, a possibility result does emerge for the deeper levels. Agents can agree to disagree on their posteriors beyond the first lexicographic level. By means of mutual absolute continuity as an additional assumption, a strong agreement theorem with equal posteriors at every lexicographic level ensues. Subsequently, we turn to games and provide epistemic conditions for the classical solution concept of perfect equilibrium. Our lexicographic agreement theorems turn out to be pivotal in this endeavour. The hypotheses of mutual primary belief in caution, mutual primary belief in rationality, and common knowledge of conjectures characterize perfect equilibrium epistemically in our lexicographic framework.
doi_str_mv 10.1016/j.jmateco.2023.102908
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04271274v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304406823001015</els_id><sourcerecordid>oai_HAL_hal_04271274v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-28d98ed36417ea60064a226ac57a84a3c3750bf3eac696afc38ea52a3e6f09703</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxfegYK1-BCFXD6mzf7K78SKlaCsEvOh5mW4m7Ya2qZu06Lc3NcWrp2Ee7z14P8buOEw4cP1QT-otduSbiQAhe03kYC_YCCSoVIG2V-y6bWsAMAbsiD0W9BV8s4q4Xwef4CoShd0q6ZqkDO3vm-CuTPYUK_JdQp-HsAnLGA7bG3ZZ4aal2_Mds4-X5_fZIi3e5q-zaZF6aXiXClvmlkqpFTeEGkArFEKjzwxahbJ3ZbCsJKHXucbKS0uYCZSkK8gNyDG7H3rXuHH7GLYYv12DwS2mhTtpoIThwqgj773Z4PWxadtI1V-AgzsBcrU7A3InQG4A1Oeehhz1Q46Bomt9oJ2nMsR-tiub8E_DD9N5crE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lexicographic agreeing to disagree and perfect equilibrium</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bach, Christian W. ; Cabessa, Jérémie</creator><creatorcontrib>Bach, Christian W. ; Cabessa, Jérémie</creatorcontrib><description>Aumann’s seminal agreement theorem deals with the impossibility for agents to acknowledge their distinct posterior beliefs. We consider agreeing to disagree in an extended framework with lexicographic probability systems. A weak agreement theorem in the sense of identical posteriors only at the first lexicographic level obtains. Somewhat surprisingly, a possibility result does emerge for the deeper levels. Agents can agree to disagree on their posteriors beyond the first lexicographic level. By means of mutual absolute continuity as an additional assumption, a strong agreement theorem with equal posteriors at every lexicographic level ensues. Subsequently, we turn to games and provide epistemic conditions for the classical solution concept of perfect equilibrium. Our lexicographic agreement theorems turn out to be pivotal in this endeavour. The hypotheses of mutual primary belief in caution, mutual primary belief in rationality, and common knowledge of conjectures characterize perfect equilibrium epistemically in our lexicographic framework.</description><identifier>ISSN: 0304-4068</identifier><identifier>DOI: 10.1016/j.jmateco.2023.102908</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Agreeing to disagree ; Agreement theorems ; Common prior assumption ; Economics and Finance ; Epistemic game theory ; Humanities and Social Sciences ; Interactive epistemology ; Lexicographic Aumann structures ; Lexicographic beliefs ; Lexicographic conjectures ; Lexicographic probability systems ; Mutual absolute continuity ; Perfect equilibrium ; Solution concepts ; Static games ; Strong agreement theorem ; Weak agreement theorem</subject><ispartof>Journal of mathematical economics, 2023-12, Vol.109, p.102908, Article 102908</ispartof><rights>2023 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-28d98ed36417ea60064a226ac57a84a3c3750bf3eac696afc38ea52a3e6f09703</cites><orcidid>0000-0003-0187-1820 ; 0000-0002-5394-5249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmateco.2023.102908$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04271274$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bach, Christian W.</creatorcontrib><creatorcontrib>Cabessa, Jérémie</creatorcontrib><title>Lexicographic agreeing to disagree and perfect equilibrium</title><title>Journal of mathematical economics</title><description>Aumann’s seminal agreement theorem deals with the impossibility for agents to acknowledge their distinct posterior beliefs. We consider agreeing to disagree in an extended framework with lexicographic probability systems. A weak agreement theorem in the sense of identical posteriors only at the first lexicographic level obtains. Somewhat surprisingly, a possibility result does emerge for the deeper levels. Agents can agree to disagree on their posteriors beyond the first lexicographic level. By means of mutual absolute continuity as an additional assumption, a strong agreement theorem with equal posteriors at every lexicographic level ensues. Subsequently, we turn to games and provide epistemic conditions for the classical solution concept of perfect equilibrium. Our lexicographic agreement theorems turn out to be pivotal in this endeavour. The hypotheses of mutual primary belief in caution, mutual primary belief in rationality, and common knowledge of conjectures characterize perfect equilibrium epistemically in our lexicographic framework.</description><subject>Agreeing to disagree</subject><subject>Agreement theorems</subject><subject>Common prior assumption</subject><subject>Economics and Finance</subject><subject>Epistemic game theory</subject><subject>Humanities and Social Sciences</subject><subject>Interactive epistemology</subject><subject>Lexicographic Aumann structures</subject><subject>Lexicographic beliefs</subject><subject>Lexicographic conjectures</subject><subject>Lexicographic probability systems</subject><subject>Mutual absolute continuity</subject><subject>Perfect equilibrium</subject><subject>Solution concepts</subject><subject>Static games</subject><subject>Strong agreement theorem</subject><subject>Weak agreement theorem</subject><issn>0304-4068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxfegYK1-BCFXD6mzf7K78SKlaCsEvOh5mW4m7Ya2qZu06Lc3NcWrp2Ee7z14P8buOEw4cP1QT-otduSbiQAhe03kYC_YCCSoVIG2V-y6bWsAMAbsiD0W9BV8s4q4Xwef4CoShd0q6ZqkDO3vm-CuTPYUK_JdQp-HsAnLGA7bG3ZZ4aal2_Mds4-X5_fZIi3e5q-zaZF6aXiXClvmlkqpFTeEGkArFEKjzwxahbJ3ZbCsJKHXucbKS0uYCZSkK8gNyDG7H3rXuHH7GLYYv12DwS2mhTtpoIThwqgj773Z4PWxadtI1V-AgzsBcrU7A3InQG4A1Oeehhz1Q46Bomt9oJ2nMsR-tiub8E_DD9N5crE</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bach, Christian W.</creator><creator>Cabessa, Jérémie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0187-1820</orcidid><orcidid>https://orcid.org/0000-0002-5394-5249</orcidid></search><sort><creationdate>20231201</creationdate><title>Lexicographic agreeing to disagree and perfect equilibrium</title><author>Bach, Christian W. ; Cabessa, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-28d98ed36417ea60064a226ac57a84a3c3750bf3eac696afc38ea52a3e6f09703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agreeing to disagree</topic><topic>Agreement theorems</topic><topic>Common prior assumption</topic><topic>Economics and Finance</topic><topic>Epistemic game theory</topic><topic>Humanities and Social Sciences</topic><topic>Interactive epistemology</topic><topic>Lexicographic Aumann structures</topic><topic>Lexicographic beliefs</topic><topic>Lexicographic conjectures</topic><topic>Lexicographic probability systems</topic><topic>Mutual absolute continuity</topic><topic>Perfect equilibrium</topic><topic>Solution concepts</topic><topic>Static games</topic><topic>Strong agreement theorem</topic><topic>Weak agreement theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bach, Christian W.</creatorcontrib><creatorcontrib>Cabessa, Jérémie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bach, Christian W.</au><au>Cabessa, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lexicographic agreeing to disagree and perfect equilibrium</atitle><jtitle>Journal of mathematical economics</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>109</volume><spage>102908</spage><pages>102908-</pages><artnum>102908</artnum><issn>0304-4068</issn><abstract>Aumann’s seminal agreement theorem deals with the impossibility for agents to acknowledge their distinct posterior beliefs. We consider agreeing to disagree in an extended framework with lexicographic probability systems. A weak agreement theorem in the sense of identical posteriors only at the first lexicographic level obtains. Somewhat surprisingly, a possibility result does emerge for the deeper levels. Agents can agree to disagree on their posteriors beyond the first lexicographic level. By means of mutual absolute continuity as an additional assumption, a strong agreement theorem with equal posteriors at every lexicographic level ensues. Subsequently, we turn to games and provide epistemic conditions for the classical solution concept of perfect equilibrium. Our lexicographic agreement theorems turn out to be pivotal in this endeavour. The hypotheses of mutual primary belief in caution, mutual primary belief in rationality, and common knowledge of conjectures characterize perfect equilibrium epistemically in our lexicographic framework.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmateco.2023.102908</doi><orcidid>https://orcid.org/0000-0003-0187-1820</orcidid><orcidid>https://orcid.org/0000-0002-5394-5249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4068
ispartof Journal of mathematical economics, 2023-12, Vol.109, p.102908, Article 102908
issn 0304-4068
language eng
recordid cdi_hal_primary_oai_HAL_hal_04271274v1
source Elsevier ScienceDirect Journals Complete
subjects Agreeing to disagree
Agreement theorems
Common prior assumption
Economics and Finance
Epistemic game theory
Humanities and Social Sciences
Interactive epistemology
Lexicographic Aumann structures
Lexicographic beliefs
Lexicographic conjectures
Lexicographic probability systems
Mutual absolute continuity
Perfect equilibrium
Solution concepts
Static games
Strong agreement theorem
Weak agreement theorem
title Lexicographic agreeing to disagree and perfect equilibrium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lexicographic%20agreeing%20to%20disagree%20and%20perfect%20equilibrium&rft.jtitle=Journal%20of%20mathematical%20economics&rft.au=Bach,%20Christian%20W.&rft.date=2023-12-01&rft.volume=109&rft.spage=102908&rft.pages=102908-&rft.artnum=102908&rft.issn=0304-4068&rft_id=info:doi/10.1016/j.jmateco.2023.102908&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04271274v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304406823001015&rfr_iscdi=true