Self‐Standing Covalent Organic Framework Membranes for H2/CO2 Separation

Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-04, Vol.33 (16), p.n/a
Hauptverfasser: Li, Baoju, Wang, Zitao, Gao, Zhuangzhuang, Suo, Jinquan, Xue, Ming, Yan, Yushan, Valtchev, Valentin, Qiu, Shilun, Fang, Qianrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page
container_title Advanced functional materials
container_volume 33
creator Li, Baoju
Wang, Zitao
Gao, Zhuangzhuang
Suo, Jinquan
Xue, Ming
Yan, Yushan
Valtchev, Valentin
Qiu, Shilun
Fang, Qianrong
description Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, which presents a great challenge for the fabrication of COF‐based membranes (COFMs). Herein, for the first time, a new synthetic strategy is reported to prepare continuous and intact self‐standing COFMs, including 2D N‐COF membrane and 3D COF‐300 membrane. Both COFMs show excellent selectivity of H2/CO2 mixed gas (13.8 for N‐COF membrane and 11 for COF‐300 membrane), and especially ultrahigh H2 permeance (4319 GPU for N‐COF membrane and 5160 GPU for COF‐300 membrane), which is superior to those of COFMs reported so far. It should be noted that the overall separation performance of self‐standing COFMs exceeds the Robeson upper bound. Furthermore, a theoretical study based on Grand Canonical Monte Carlo (GCMC) simulation is performed to explain the excellent separation of H2/CO2 through COFMs. Thus, this facile preparation method will provide a broad prospect for the development of self‐standing COFMs with highly efficient H2 purification. Herein, two self‐standing covalent organic framework (COF) membranes are successfully prepared by using steam‐assisted methods to overcome the difficult processing characteristics of COFs. Due to the abundant mass transfer channels and CO2 adsorption sites, these self‐standing membranes have excellent selectivity and ultra‐high H2 permeance in the separation of H2/CO2.
doi_str_mv 10.1002/adfm.202300219
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04270597v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802280281</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3079-7bc7e33567016d12bb2fc19ffd806041b0d44c7dcbef0fbb91fe04e109b78c53</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhTdGExW9em7iyUNhZrd02yOpIhoIBzh42-y2u1Bsu7gtEG7-BH-jv0QaTA-TmTf58vLyCHlA6CMAHcjMlH0KlJ0ExhfkBkMMfQY0uuxu_Lgmt3W9AUDOWXBD3he6ML_fP4tGVllerbzE7mWhq8abu5Ws8tQbO1nqg3Wf3kyXyslK156xzpvQQTKn3kJvpZNNbqs7cmVkUev7_90jy_HLMpn40_nrWzKa-msGPPa5SrlmbBhywDBDqhQ1KcbGZBGEEKCCLAhSnqVKGzBKxWg0BBohVjxKh6xHns62a1mIrctL6Y7CylxMRlPR_iCgHIYx3-OJfTyzW2e_drpuxMbuXHVKJ2gEtJ2opeIzdcgLfew8EUTbq2h7FV2vYvQ8nnWK_QE7P22B</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802280281</pqid></control><display><type>article</type><title>Self‐Standing Covalent Organic Framework Membranes for H2/CO2 Separation</title><source>Wiley-Blackwell Journals</source><creator>Li, Baoju ; Wang, Zitao ; Gao, Zhuangzhuang ; Suo, Jinquan ; Xue, Ming ; Yan, Yushan ; Valtchev, Valentin ; Qiu, Shilun ; Fang, Qianrong</creator><creatorcontrib>Li, Baoju ; Wang, Zitao ; Gao, Zhuangzhuang ; Suo, Jinquan ; Xue, Ming ; Yan, Yushan ; Valtchev, Valentin ; Qiu, Shilun ; Fang, Qianrong</creatorcontrib><description>Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, which presents a great challenge for the fabrication of COF‐based membranes (COFMs). Herein, for the first time, a new synthetic strategy is reported to prepare continuous and intact self‐standing COFMs, including 2D N‐COF membrane and 3D COF‐300 membrane. Both COFMs show excellent selectivity of H2/CO2 mixed gas (13.8 for N‐COF membrane and 11 for COF‐300 membrane), and especially ultrahigh H2 permeance (4319 GPU for N‐COF membrane and 5160 GPU for COF‐300 membrane), which is superior to those of COFMs reported so far. It should be noted that the overall separation performance of self‐standing COFMs exceeds the Robeson upper bound. Furthermore, a theoretical study based on Grand Canonical Monte Carlo (GCMC) simulation is performed to explain the excellent separation of H2/CO2 through COFMs. Thus, this facile preparation method will provide a broad prospect for the development of self‐standing COFMs with highly efficient H2 purification. Herein, two self‐standing covalent organic framework (COF) membranes are successfully prepared by using steam‐assisted methods to overcome the difficult processing characteristics of COFs. Due to the abundant mass transfer channels and CO2 adsorption sites, these self‐standing membranes have excellent selectivity and ultra‐high H2 permeance in the separation of H2/CO2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202300219</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Chemical Sciences ; covalent organic frameworks ; H 2/CO 2 separation ; High temperature ; Materials science ; Membranes ; self‐standing membranes ; Separation ; Upper bounds</subject><ispartof>Advanced functional materials, 2023-04, Vol.33 (16), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3365-5508 ; 0000-0002-2341-6397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202300219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202300219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04270597$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Baoju</creatorcontrib><creatorcontrib>Wang, Zitao</creatorcontrib><creatorcontrib>Gao, Zhuangzhuang</creatorcontrib><creatorcontrib>Suo, Jinquan</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Yan, Yushan</creatorcontrib><creatorcontrib>Valtchev, Valentin</creatorcontrib><creatorcontrib>Qiu, Shilun</creatorcontrib><creatorcontrib>Fang, Qianrong</creatorcontrib><title>Self‐Standing Covalent Organic Framework Membranes for H2/CO2 Separation</title><title>Advanced functional materials</title><description>Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, which presents a great challenge for the fabrication of COF‐based membranes (COFMs). Herein, for the first time, a new synthetic strategy is reported to prepare continuous and intact self‐standing COFMs, including 2D N‐COF membrane and 3D COF‐300 membrane. Both COFMs show excellent selectivity of H2/CO2 mixed gas (13.8 for N‐COF membrane and 11 for COF‐300 membrane), and especially ultrahigh H2 permeance (4319 GPU for N‐COF membrane and 5160 GPU for COF‐300 membrane), which is superior to those of COFMs reported so far. It should be noted that the overall separation performance of self‐standing COFMs exceeds the Robeson upper bound. Furthermore, a theoretical study based on Grand Canonical Monte Carlo (GCMC) simulation is performed to explain the excellent separation of H2/CO2 through COFMs. Thus, this facile preparation method will provide a broad prospect for the development of self‐standing COFMs with highly efficient H2 purification. Herein, two self‐standing covalent organic framework (COF) membranes are successfully prepared by using steam‐assisted methods to overcome the difficult processing characteristics of COFs. Due to the abundant mass transfer channels and CO2 adsorption sites, these self‐standing membranes have excellent selectivity and ultra‐high H2 permeance in the separation of H2/CO2.</description><subject>Carbon dioxide</subject><subject>Chemical Sciences</subject><subject>covalent organic frameworks</subject><subject>H 2/CO 2 separation</subject><subject>High temperature</subject><subject>Materials science</subject><subject>Membranes</subject><subject>self‐standing membranes</subject><subject>Separation</subject><subject>Upper bounds</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwkAQhTdGExW9em7iyUNhZrd02yOpIhoIBzh42-y2u1Bsu7gtEG7-BH-jv0QaTA-TmTf58vLyCHlA6CMAHcjMlH0KlJ0ExhfkBkMMfQY0uuxu_Lgmt3W9AUDOWXBD3he6ML_fP4tGVllerbzE7mWhq8abu5Ws8tQbO1nqg3Wf3kyXyslK156xzpvQQTKn3kJvpZNNbqs7cmVkUev7_90jy_HLMpn40_nrWzKa-msGPPa5SrlmbBhywDBDqhQ1KcbGZBGEEKCCLAhSnqVKGzBKxWg0BBohVjxKh6xHns62a1mIrctL6Y7CylxMRlPR_iCgHIYx3-OJfTyzW2e_drpuxMbuXHVKJ2gEtJ2opeIzdcgLfew8EUTbq2h7FV2vYvQ8nnWK_QE7P22B</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Li, Baoju</creator><creator>Wang, Zitao</creator><creator>Gao, Zhuangzhuang</creator><creator>Suo, Jinquan</creator><creator>Xue, Ming</creator><creator>Yan, Yushan</creator><creator>Valtchev, Valentin</creator><creator>Qiu, Shilun</creator><creator>Fang, Qianrong</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3365-5508</orcidid><orcidid>https://orcid.org/0000-0002-2341-6397</orcidid></search><sort><creationdate>20230418</creationdate><title>Self‐Standing Covalent Organic Framework Membranes for H2/CO2 Separation</title><author>Li, Baoju ; Wang, Zitao ; Gao, Zhuangzhuang ; Suo, Jinquan ; Xue, Ming ; Yan, Yushan ; Valtchev, Valentin ; Qiu, Shilun ; Fang, Qianrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3079-7bc7e33567016d12bb2fc19ffd806041b0d44c7dcbef0fbb91fe04e109b78c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Chemical Sciences</topic><topic>covalent organic frameworks</topic><topic>H 2/CO 2 separation</topic><topic>High temperature</topic><topic>Materials science</topic><topic>Membranes</topic><topic>self‐standing membranes</topic><topic>Separation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Baoju</creatorcontrib><creatorcontrib>Wang, Zitao</creatorcontrib><creatorcontrib>Gao, Zhuangzhuang</creatorcontrib><creatorcontrib>Suo, Jinquan</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Yan, Yushan</creatorcontrib><creatorcontrib>Valtchev, Valentin</creatorcontrib><creatorcontrib>Qiu, Shilun</creatorcontrib><creatorcontrib>Fang, Qianrong</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Baoju</au><au>Wang, Zitao</au><au>Gao, Zhuangzhuang</au><au>Suo, Jinquan</au><au>Xue, Ming</au><au>Yan, Yushan</au><au>Valtchev, Valentin</au><au>Qiu, Shilun</au><au>Fang, Qianrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Standing Covalent Organic Framework Membranes for H2/CO2 Separation</atitle><jtitle>Advanced functional materials</jtitle><date>2023-04-18</date><risdate>2023</risdate><volume>33</volume><issue>16</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Covalent organic frameworks (COFs) are proposed as promising candidates for engineering advanced molecular sieving membranes due to their precise pore sizes, modifiable pore environment, and superior stability. However, COFs are insoluble in common solvents and do not melt at high temperatures, which presents a great challenge for the fabrication of COF‐based membranes (COFMs). Herein, for the first time, a new synthetic strategy is reported to prepare continuous and intact self‐standing COFMs, including 2D N‐COF membrane and 3D COF‐300 membrane. Both COFMs show excellent selectivity of H2/CO2 mixed gas (13.8 for N‐COF membrane and 11 for COF‐300 membrane), and especially ultrahigh H2 permeance (4319 GPU for N‐COF membrane and 5160 GPU for COF‐300 membrane), which is superior to those of COFMs reported so far. It should be noted that the overall separation performance of self‐standing COFMs exceeds the Robeson upper bound. Furthermore, a theoretical study based on Grand Canonical Monte Carlo (GCMC) simulation is performed to explain the excellent separation of H2/CO2 through COFMs. Thus, this facile preparation method will provide a broad prospect for the development of self‐standing COFMs with highly efficient H2 purification. Herein, two self‐standing covalent organic framework (COF) membranes are successfully prepared by using steam‐assisted methods to overcome the difficult processing characteristics of COFs. Due to the abundant mass transfer channels and CO2 adsorption sites, these self‐standing membranes have excellent selectivity and ultra‐high H2 permeance in the separation of H2/CO2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202300219</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3365-5508</orcidid><orcidid>https://orcid.org/0000-0002-2341-6397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-04, Vol.33 (16), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_hal_primary_oai_HAL_hal_04270597v1
source Wiley-Blackwell Journals
subjects Carbon dioxide
Chemical Sciences
covalent organic frameworks
H 2/CO 2 separation
High temperature
Materials science
Membranes
self‐standing membranes
Separation
Upper bounds
title Self‐Standing Covalent Organic Framework Membranes for H2/CO2 Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Standing%20Covalent%20Organic%20Framework%20Membranes%20for%20H2/CO2%20Separation&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Baoju&rft.date=2023-04-18&rft.volume=33&rft.issue=16&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202300219&rft_dat=%3Cproquest_hal_p%3E2802280281%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2802280281&rft_id=info:pmid/&rfr_iscdi=true