Decontamination efficiency of poly(hydroxybutyrate‐co‐valerate)‐based food packaging material: The role of the chemical structure of contaminants and additive
Recycled plastic materials can only be placed in the market if they are free from contaminants at harmful levels. This work studies the thermal decontamination of poly(hydroxybutyrate‐co‐valerate) (PHBV) intended for food contact. PHBV was first contaminated with gallic acid, catechin, ferulic acid,...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2024-01, Vol.141 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 141 |
creator | Dedieu, Isabelle Bonnenfant, Chloë Peyron, Stéphane Gontard, Nathalie Aouf, Chahinez |
description | Recycled plastic materials can only be placed in the market if they are free from contaminants at harmful levels. This work studies the thermal decontamination of poly(hydroxybutyrate‐co‐valerate) (PHBV) intended for food contact. PHBV was first contaminated with gallic acid, catechin, ferulic acid, and PEG 200, at 500 mg/kg. Thermal decontamination was then applied at 160°C for 6 and 48 h. Due to the low volatility of these molecules and their hydrogen bonding interactions with the polymer, decontamination efficiency was well below safety limits. Indeed, only 25.9% of gallic acid, 68.5% of catechin, 67% of ferulic acid, and 86.8% of PEG 200 were removed. In addition, a strong degradation of the polymer was observed (Mw decrease of 57%). To try to prevent polymer degradation, while enhancing decontamination conditions, quercetin (a natural polyphenol) was used as a stabilizer at 0.5 wt%. After 6 h of decontamination, hydrogen bonds, and π‐stacking interactions were formed between quercetin and the contaminants, reducing their removal (−8.5% for gallic acid, −57.4% for catechin, −18.7% for ferulic acid, and −31.9% for PEG200). After 48 h, strong PHBV degradation was observed (−83% Mw and −45% Xc), particularly in the presence of quercetin.
Behavior of PHBV and polar contaminants during mechanical recycling. |
doi_str_mv | 10.1002/app.54776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04269200v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895674483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3266-c771cebe68b0bd7039dde30a6397adaec05c08c6ca1b9747da1a290b49342e483</originalsourceid><addsrcrecordid>eNp1kU1uFDEQhS0EEkNgwQ0ssSGLTuz-sdvsRuEnSCORRVhb1XZ1xqGn3djugd5xhBwiJ-MkeDIorNhUlf1efSrpEfKaszPOWHkO03TW1FKKJ2TFmZJFLcr2KVlljRetUs1z8iLGW8Y4b5hYkfv3aPyYYOdGSM6PFPveGYejWajv6eSH5e12scH_XLo5LQES_v51Z3wuexjw8D7NcwcRLe29t3QC8w1u3HhDd1kMDoZ39HqLNPgBD8iUZ7PFnTMw0JjCbNIcHpTHQ8YUKYyWgrUuuT2-JM96GCK--ttPyNePH64vLovNl0-fL9abwlSlEIWRkhvsULQd66xklbIWKwaiUhIsoGGNYa0RBninZC0tcCgV62pV1SXWbXVCTo_cLQx6Cm4HYdEenL5cb_Thj9WlUCVje569b47eKfjvM8akb_0cxnyeLlvVCFln4D-iCT7GgP0jljN9CEznwPRDYNl7fvT-cAMu_zfq9dXVceMPvSGd4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895674483</pqid></control><display><type>article</type><title>Decontamination efficiency of poly(hydroxybutyrate‐co‐valerate)‐based food packaging material: The role of the chemical structure of contaminants and additive</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dedieu, Isabelle ; Bonnenfant, Chloë ; Peyron, Stéphane ; Gontard, Nathalie ; Aouf, Chahinez</creator><creatorcontrib>Dedieu, Isabelle ; Bonnenfant, Chloë ; Peyron, Stéphane ; Gontard, Nathalie ; Aouf, Chahinez</creatorcontrib><description>Recycled plastic materials can only be placed in the market if they are free from contaminants at harmful levels. This work studies the thermal decontamination of poly(hydroxybutyrate‐co‐valerate) (PHBV) intended for food contact. PHBV was first contaminated with gallic acid, catechin, ferulic acid, and PEG 200, at 500 mg/kg. Thermal decontamination was then applied at 160°C for 6 and 48 h. Due to the low volatility of these molecules and their hydrogen bonding interactions with the polymer, decontamination efficiency was well below safety limits. Indeed, only 25.9% of gallic acid, 68.5% of catechin, 67% of ferulic acid, and 86.8% of PEG 200 were removed. In addition, a strong degradation of the polymer was observed (Mw decrease of 57%). To try to prevent polymer degradation, while enhancing decontamination conditions, quercetin (a natural polyphenol) was used as a stabilizer at 0.5 wt%. After 6 h of decontamination, hydrogen bonds, and π‐stacking interactions were formed between quercetin and the contaminants, reducing their removal (−8.5% for gallic acid, −57.4% for catechin, −18.7% for ferulic acid, and −31.9% for PEG200). After 48 h, strong PHBV degradation was observed (−83% Mw and −45% Xc), particularly in the presence of quercetin.
Behavior of PHBV and polar contaminants during mechanical recycling.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.54776</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acids ; Catechin ; Chemical Sciences ; Contaminants ; Decontamination ; Degradation ; Ferulic acid ; Food engineering ; Food packaging ; Gallic acid ; Hydrogen bonding ; Hydrogen bonds ; Life Sciences ; mechanical recycling ; poly(hydroxybutyrate‐co‐valerate) ; Polymers ; Recycled materials ; stabilizer</subject><ispartof>Journal of applied polymer science, 2024-01, Vol.141 (2), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3266-c771cebe68b0bd7039dde30a6397adaec05c08c6ca1b9747da1a290b49342e483</cites><orcidid>0000-0001-7989-7874 ; 0000-0001-7019-6940 ; 0000-0002-8544-3139 ; 0000-0002-5059-3225 ; 0000-0002-5136-204X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.54776$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.54776$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04269200$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dedieu, Isabelle</creatorcontrib><creatorcontrib>Bonnenfant, Chloë</creatorcontrib><creatorcontrib>Peyron, Stéphane</creatorcontrib><creatorcontrib>Gontard, Nathalie</creatorcontrib><creatorcontrib>Aouf, Chahinez</creatorcontrib><title>Decontamination efficiency of poly(hydroxybutyrate‐co‐valerate)‐based food packaging material: The role of the chemical structure of contaminants and additive</title><title>Journal of applied polymer science</title><description>Recycled plastic materials can only be placed in the market if they are free from contaminants at harmful levels. This work studies the thermal decontamination of poly(hydroxybutyrate‐co‐valerate) (PHBV) intended for food contact. PHBV was first contaminated with gallic acid, catechin, ferulic acid, and PEG 200, at 500 mg/kg. Thermal decontamination was then applied at 160°C for 6 and 48 h. Due to the low volatility of these molecules and their hydrogen bonding interactions with the polymer, decontamination efficiency was well below safety limits. Indeed, only 25.9% of gallic acid, 68.5% of catechin, 67% of ferulic acid, and 86.8% of PEG 200 were removed. In addition, a strong degradation of the polymer was observed (Mw decrease of 57%). To try to prevent polymer degradation, while enhancing decontamination conditions, quercetin (a natural polyphenol) was used as a stabilizer at 0.5 wt%. After 6 h of decontamination, hydrogen bonds, and π‐stacking interactions were formed between quercetin and the contaminants, reducing their removal (−8.5% for gallic acid, −57.4% for catechin, −18.7% for ferulic acid, and −31.9% for PEG200). After 48 h, strong PHBV degradation was observed (−83% Mw and −45% Xc), particularly in the presence of quercetin.
Behavior of PHBV and polar contaminants during mechanical recycling.</description><subject>Acids</subject><subject>Catechin</subject><subject>Chemical Sciences</subject><subject>Contaminants</subject><subject>Decontamination</subject><subject>Degradation</subject><subject>Ferulic acid</subject><subject>Food engineering</subject><subject>Food packaging</subject><subject>Gallic acid</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Life Sciences</subject><subject>mechanical recycling</subject><subject>poly(hydroxybutyrate‐co‐valerate)</subject><subject>Polymers</subject><subject>Recycled materials</subject><subject>stabilizer</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1uFDEQhS0EEkNgwQ0ssSGLTuz-sdvsRuEnSCORRVhb1XZ1xqGn3djugd5xhBwiJ-MkeDIorNhUlf1efSrpEfKaszPOWHkO03TW1FKKJ2TFmZJFLcr2KVlljRetUs1z8iLGW8Y4b5hYkfv3aPyYYOdGSM6PFPveGYejWajv6eSH5e12scH_XLo5LQES_v51Z3wuexjw8D7NcwcRLe29t3QC8w1u3HhDd1kMDoZ39HqLNPgBD8iUZ7PFnTMw0JjCbNIcHpTHQ8YUKYyWgrUuuT2-JM96GCK--ttPyNePH64vLovNl0-fL9abwlSlEIWRkhvsULQd66xklbIWKwaiUhIsoGGNYa0RBninZC0tcCgV62pV1SXWbXVCTo_cLQx6Cm4HYdEenL5cb_Thj9WlUCVje569b47eKfjvM8akb_0cxnyeLlvVCFln4D-iCT7GgP0jljN9CEznwPRDYNl7fvT-cAMu_zfq9dXVceMPvSGd4Q</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Dedieu, Isabelle</creator><creator>Bonnenfant, Chloë</creator><creator>Peyron, Stéphane</creator><creator>Gontard, Nathalie</creator><creator>Aouf, Chahinez</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7989-7874</orcidid><orcidid>https://orcid.org/0000-0001-7019-6940</orcidid><orcidid>https://orcid.org/0000-0002-8544-3139</orcidid><orcidid>https://orcid.org/0000-0002-5059-3225</orcidid><orcidid>https://orcid.org/0000-0002-5136-204X</orcidid></search><sort><creationdate>20240110</creationdate><title>Decontamination efficiency of poly(hydroxybutyrate‐co‐valerate)‐based food packaging material: The role of the chemical structure of contaminants and additive</title><author>Dedieu, Isabelle ; Bonnenfant, Chloë ; Peyron, Stéphane ; Gontard, Nathalie ; Aouf, Chahinez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3266-c771cebe68b0bd7039dde30a6397adaec05c08c6ca1b9747da1a290b49342e483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Catechin</topic><topic>Chemical Sciences</topic><topic>Contaminants</topic><topic>Decontamination</topic><topic>Degradation</topic><topic>Ferulic acid</topic><topic>Food engineering</topic><topic>Food packaging</topic><topic>Gallic acid</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Life Sciences</topic><topic>mechanical recycling</topic><topic>poly(hydroxybutyrate‐co‐valerate)</topic><topic>Polymers</topic><topic>Recycled materials</topic><topic>stabilizer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dedieu, Isabelle</creatorcontrib><creatorcontrib>Bonnenfant, Chloë</creatorcontrib><creatorcontrib>Peyron, Stéphane</creatorcontrib><creatorcontrib>Gontard, Nathalie</creatorcontrib><creatorcontrib>Aouf, Chahinez</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dedieu, Isabelle</au><au>Bonnenfant, Chloë</au><au>Peyron, Stéphane</au><au>Gontard, Nathalie</au><au>Aouf, Chahinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decontamination efficiency of poly(hydroxybutyrate‐co‐valerate)‐based food packaging material: The role of the chemical structure of contaminants and additive</atitle><jtitle>Journal of applied polymer science</jtitle><date>2024-01-10</date><risdate>2024</risdate><volume>141</volume><issue>2</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Recycled plastic materials can only be placed in the market if they are free from contaminants at harmful levels. This work studies the thermal decontamination of poly(hydroxybutyrate‐co‐valerate) (PHBV) intended for food contact. PHBV was first contaminated with gallic acid, catechin, ferulic acid, and PEG 200, at 500 mg/kg. Thermal decontamination was then applied at 160°C for 6 and 48 h. Due to the low volatility of these molecules and their hydrogen bonding interactions with the polymer, decontamination efficiency was well below safety limits. Indeed, only 25.9% of gallic acid, 68.5% of catechin, 67% of ferulic acid, and 86.8% of PEG 200 were removed. In addition, a strong degradation of the polymer was observed (Mw decrease of 57%). To try to prevent polymer degradation, while enhancing decontamination conditions, quercetin (a natural polyphenol) was used as a stabilizer at 0.5 wt%. After 6 h of decontamination, hydrogen bonds, and π‐stacking interactions were formed between quercetin and the contaminants, reducing their removal (−8.5% for gallic acid, −57.4% for catechin, −18.7% for ferulic acid, and −31.9% for PEG200). After 48 h, strong PHBV degradation was observed (−83% Mw and −45% Xc), particularly in the presence of quercetin.
Behavior of PHBV and polar contaminants during mechanical recycling.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.54776</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7989-7874</orcidid><orcidid>https://orcid.org/0000-0001-7019-6940</orcidid><orcidid>https://orcid.org/0000-0002-8544-3139</orcidid><orcidid>https://orcid.org/0000-0002-5059-3225</orcidid><orcidid>https://orcid.org/0000-0002-5136-204X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2024-01, Vol.141 (2), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04269200v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acids Catechin Chemical Sciences Contaminants Decontamination Degradation Ferulic acid Food engineering Food packaging Gallic acid Hydrogen bonding Hydrogen bonds Life Sciences mechanical recycling poly(hydroxybutyrate‐co‐valerate) Polymers Recycled materials stabilizer |
title | Decontamination efficiency of poly(hydroxybutyrate‐co‐valerate)‐based food packaging material: The role of the chemical structure of contaminants and additive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decontamination%20efficiency%20of%20poly(hydroxybutyrate%E2%80%90co%E2%80%90valerate)%E2%80%90based%20food%20packaging%20material:%20The%20role%20of%20the%20chemical%20structure%20of%20contaminants%20and%20additive&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Dedieu,%20Isabelle&rft.date=2024-01-10&rft.volume=141&rft.issue=2&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.54776&rft_dat=%3Cproquest_hal_p%3E2895674483%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895674483&rft_id=info:pmid/&rfr_iscdi=true |