Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction
In this study, we present a novel approach for the synthesis of covalent organic frameworks (COFs) that overcomes the common limitations of non‐scalable solvothermal procedures. Our method allows for the room‐temperature and scalable synthesis of a highly fluorinated DFTAPB‐TFTA‐COF, which exhibits...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-11, Vol.62 (47), p.e202313940-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | e202313940 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Martínez‐Fernández, Marcos Martínez‐Periñán, Emiliano Peña Ruigómez, Alejandro Cabrera‐Trujillo, Jorge J. Navarro, Jorge A. R. Aguilar‐Galindo, Fernando Rodríguez‐San‐Miguel, David Ramos, Mar Vismara, Rebecca Zamora, Félix Lorenzo, Encarnación Segura, José L. |
description | In this study, we present a novel approach for the synthesis of covalent organic frameworks (COFs) that overcomes the common limitations of non‐scalable solvothermal procedures. Our method allows for the room‐temperature and scalable synthesis of a highly fluorinated DFTAPB‐TFTA‐COF, which exhibits intrinsic hydrophobicity. We used DFT‐based calculations to elucidate the role of the fluorine atoms in enhancing the crystallinity of the material through corrugation effects, resulting in maximized interlayer interactions, as disclosed both from PXRD structural resolution and theoretical simulations. We further investigated the electrocatalytic properties of this material towards the oxygen reduction reaction (ORR). Our results show that the fluorinated COF produces hydrogen peroxide selectively with low overpotential (0.062 V) and high turnover frequency (0.0757 s−1) without the addition of any conductive additives. These values are among the best reported for non‐pyrolyzed and metal‐free electrocatalysts. Finally, we employed DFT‐based calculations to analyse the reaction mechanism, highlighting the crucial role of the fluorine atom in the active site assembly. Our findings shed light on the potential of fluorinated COFs as promising electrocatalysts for the ORR, as well as their potential applications in other fields.
Covalent organic frameworks (COFs) are a class of crystalline polymers. Herein we report the room temperature and scalable synthesis of two isostructural COFs, modulated by the introduction of fluorine atoms, obtaining an extended framework with record number of F per pore. The substitution produces a dramatical increase of selectivity for the oxygen reduction reaction electrocatalysis, with a response comparable to other noble electrocatalysts. |
doi_str_mv | 10.1002/anie.202313940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04264935v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889809701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4240-f73b2eebc7900a5a04da2aab0afc5efe36c8acb1312dfcd234dd45cd6b0edbe43</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIJErhytkSFzhs6q_N7h6jKGkqRQRROFuz9mzi4tjF3m1Z_nocBbUSF04zGv3e0xu9onjP6IxRyq_AW5xxygUTraQvigtWcVaKuhYv8y6FKOumYq-LNyndZb5p6Pyi-H2rwUHnkNxOfjhgsomAN2TlUA8xaBjATYPV5AvGPsQjeI0k9GRj9wc3kbUbQ7QeBjRkGR7AoR_ILu5zFk3WEY74GOKPRLKU7H5Ne_TkK5pRDzb4t8WrHlzCd3_nZfF9vfq23JTb3fXNcrEtteSSln0tOo7Y6bqlFCqg0gAH6Cj0usIexVw3oDsmGDe9NlxIY2SlzbyjaDqU4rL4dPY9gFP30R4hTiqAVZvFVp1uVPK5bEX1wDL78czex_BzxDSoo00anQOPYUyKN3XDWyYqmtEP_6B3YYw-f5Kppm1oW9OT4exM6RhSitg_JWBUnWpTp9rUU21Z0J4Fj9bh9B9aLT7frJ61fwA5mJ5n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889809701</pqid></control><display><type>article</type><title>Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction</title><source>Wiley-Blackwell Full Collection</source><creator>Martínez‐Fernández, Marcos ; Martínez‐Periñán, Emiliano ; Peña Ruigómez, Alejandro ; Cabrera‐Trujillo, Jorge J. ; Navarro, Jorge A. R. ; Aguilar‐Galindo, Fernando ; Rodríguez‐San‐Miguel, David ; Ramos, Mar ; Vismara, Rebecca ; Zamora, Félix ; Lorenzo, Encarnación ; Segura, José L.</creator><creatorcontrib>Martínez‐Fernández, Marcos ; Martínez‐Periñán, Emiliano ; Peña Ruigómez, Alejandro ; Cabrera‐Trujillo, Jorge J. ; Navarro, Jorge A. R. ; Aguilar‐Galindo, Fernando ; Rodríguez‐San‐Miguel, David ; Ramos, Mar ; Vismara, Rebecca ; Zamora, Félix ; Lorenzo, Encarnación ; Segura, José L.</creatorcontrib><description>In this study, we present a novel approach for the synthesis of covalent organic frameworks (COFs) that overcomes the common limitations of non‐scalable solvothermal procedures. Our method allows for the room‐temperature and scalable synthesis of a highly fluorinated DFTAPB‐TFTA‐COF, which exhibits intrinsic hydrophobicity. We used DFT‐based calculations to elucidate the role of the fluorine atoms in enhancing the crystallinity of the material through corrugation effects, resulting in maximized interlayer interactions, as disclosed both from PXRD structural resolution and theoretical simulations. We further investigated the electrocatalytic properties of this material towards the oxygen reduction reaction (ORR). Our results show that the fluorinated COF produces hydrogen peroxide selectively with low overpotential (0.062 V) and high turnover frequency (0.0757 s−1) without the addition of any conductive additives. These values are among the best reported for non‐pyrolyzed and metal‐free electrocatalysts. Finally, we employed DFT‐based calculations to analyse the reaction mechanism, highlighting the crucial role of the fluorine atom in the active site assembly. Our findings shed light on the potential of fluorinated COFs as promising electrocatalysts for the ORR, as well as their potential applications in other fields.
Covalent organic frameworks (COFs) are a class of crystalline polymers. Herein we report the room temperature and scalable synthesis of two isostructural COFs, modulated by the introduction of fluorine atoms, obtaining an extended framework with record number of F per pore. The substitution produces a dramatical increase of selectivity for the oxygen reduction reaction electrocatalysis, with a response comparable to other noble electrocatalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202313940</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Additives ; Analytical chemistry ; Chemical reduction ; Chemical Sciences ; COF ; Electrocatalysis ; Electrocatalysts ; Fluorination ; Fluorine ; Frameworks ; H2O2 ; Hydrogen peroxide ; Hydrophobicity ; Interlayers ; Material chemistry ; Mathematical analysis ; or physical chemistry ; ORR ; Oxygen reduction reactions ; Polymers ; Reaction mechanisms ; Synthesis ; Theoretical and</subject><ispartof>Angewandte Chemie International Edition, 2023-11, Vol.62 (47), p.e202313940-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4240-f73b2eebc7900a5a04da2aab0afc5efe36c8acb1312dfcd234dd45cd6b0edbe43</citedby><cites>FETCH-LOGICAL-c4240-f73b2eebc7900a5a04da2aab0afc5efe36c8acb1312dfcd234dd45cd6b0edbe43</cites><orcidid>0000-0003-3122-3381 ; 0000-0001-8432-9652 ; 0000-0002-8359-0397 ; 0000-0002-3360-1019 ; 0000-0002-1158-5409 ; 0000-0003-2751-5592 ; 0000-0002-1476-2175 ; 0000-0001-7447-491X ; 0000-0001-9474-7671 ; 0000-0001-7529-5120 ; 0000-0001-8988-4268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202313940$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202313940$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://univ-pau.hal.science/hal-04264935$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez‐Fernández, Marcos</creatorcontrib><creatorcontrib>Martínez‐Periñán, Emiliano</creatorcontrib><creatorcontrib>Peña Ruigómez, Alejandro</creatorcontrib><creatorcontrib>Cabrera‐Trujillo, Jorge J.</creatorcontrib><creatorcontrib>Navarro, Jorge A. R.</creatorcontrib><creatorcontrib>Aguilar‐Galindo, Fernando</creatorcontrib><creatorcontrib>Rodríguez‐San‐Miguel, David</creatorcontrib><creatorcontrib>Ramos, Mar</creatorcontrib><creatorcontrib>Vismara, Rebecca</creatorcontrib><creatorcontrib>Zamora, Félix</creatorcontrib><creatorcontrib>Lorenzo, Encarnación</creatorcontrib><creatorcontrib>Segura, José L.</creatorcontrib><title>Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction</title><title>Angewandte Chemie International Edition</title><description>In this study, we present a novel approach for the synthesis of covalent organic frameworks (COFs) that overcomes the common limitations of non‐scalable solvothermal procedures. Our method allows for the room‐temperature and scalable synthesis of a highly fluorinated DFTAPB‐TFTA‐COF, which exhibits intrinsic hydrophobicity. We used DFT‐based calculations to elucidate the role of the fluorine atoms in enhancing the crystallinity of the material through corrugation effects, resulting in maximized interlayer interactions, as disclosed both from PXRD structural resolution and theoretical simulations. We further investigated the electrocatalytic properties of this material towards the oxygen reduction reaction (ORR). Our results show that the fluorinated COF produces hydrogen peroxide selectively with low overpotential (0.062 V) and high turnover frequency (0.0757 s−1) without the addition of any conductive additives. These values are among the best reported for non‐pyrolyzed and metal‐free electrocatalysts. Finally, we employed DFT‐based calculations to analyse the reaction mechanism, highlighting the crucial role of the fluorine atom in the active site assembly. Our findings shed light on the potential of fluorinated COFs as promising electrocatalysts for the ORR, as well as their potential applications in other fields.
Covalent organic frameworks (COFs) are a class of crystalline polymers. Herein we report the room temperature and scalable synthesis of two isostructural COFs, modulated by the introduction of fluorine atoms, obtaining an extended framework with record number of F per pore. The substitution produces a dramatical increase of selectivity for the oxygen reduction reaction electrocatalysis, with a response comparable to other noble electrocatalysts.</description><subject>Additives</subject><subject>Analytical chemistry</subject><subject>Chemical reduction</subject><subject>Chemical Sciences</subject><subject>COF</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>Frameworks</subject><subject>H2O2</subject><subject>Hydrogen peroxide</subject><subject>Hydrophobicity</subject><subject>Interlayers</subject><subject>Material chemistry</subject><subject>Mathematical analysis</subject><subject>or physical chemistry</subject><subject>ORR</subject><subject>Oxygen reduction reactions</subject><subject>Polymers</subject><subject>Reaction mechanisms</subject><subject>Synthesis</subject><subject>Theoretical and</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1vEzEQxVcIJErhytkSFzhs6q_N7h6jKGkqRQRROFuz9mzi4tjF3m1Z_nocBbUSF04zGv3e0xu9onjP6IxRyq_AW5xxygUTraQvigtWcVaKuhYv8y6FKOumYq-LNyndZb5p6Pyi-H2rwUHnkNxOfjhgsomAN2TlUA8xaBjATYPV5AvGPsQjeI0k9GRj9wc3kbUbQ7QeBjRkGR7AoR_ILu5zFk3WEY74GOKPRLKU7H5Ne_TkK5pRDzb4t8WrHlzCd3_nZfF9vfq23JTb3fXNcrEtteSSln0tOo7Y6bqlFCqg0gAH6Cj0usIexVw3oDsmGDe9NlxIY2SlzbyjaDqU4rL4dPY9gFP30R4hTiqAVZvFVp1uVPK5bEX1wDL78czex_BzxDSoo00anQOPYUyKN3XDWyYqmtEP_6B3YYw-f5Kppm1oW9OT4exM6RhSitg_JWBUnWpTp9rUU21Z0J4Fj9bh9B9aLT7frJ61fwA5mJ5n</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Martínez‐Fernández, Marcos</creator><creator>Martínez‐Periñán, Emiliano</creator><creator>Peña Ruigómez, Alejandro</creator><creator>Cabrera‐Trujillo, Jorge J.</creator><creator>Navarro, Jorge A. R.</creator><creator>Aguilar‐Galindo, Fernando</creator><creator>Rodríguez‐San‐Miguel, David</creator><creator>Ramos, Mar</creator><creator>Vismara, Rebecca</creator><creator>Zamora, Félix</creator><creator>Lorenzo, Encarnación</creator><creator>Segura, José L.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3122-3381</orcidid><orcidid>https://orcid.org/0000-0001-8432-9652</orcidid><orcidid>https://orcid.org/0000-0002-8359-0397</orcidid><orcidid>https://orcid.org/0000-0002-3360-1019</orcidid><orcidid>https://orcid.org/0000-0002-1158-5409</orcidid><orcidid>https://orcid.org/0000-0003-2751-5592</orcidid><orcidid>https://orcid.org/0000-0002-1476-2175</orcidid><orcidid>https://orcid.org/0000-0001-7447-491X</orcidid><orcidid>https://orcid.org/0000-0001-9474-7671</orcidid><orcidid>https://orcid.org/0000-0001-7529-5120</orcidid><orcidid>https://orcid.org/0000-0001-8988-4268</orcidid></search><sort><creationdate>20231120</creationdate><title>Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction</title><author>Martínez‐Fernández, Marcos ; Martínez‐Periñán, Emiliano ; Peña Ruigómez, Alejandro ; Cabrera‐Trujillo, Jorge J. ; Navarro, Jorge A. R. ; Aguilar‐Galindo, Fernando ; Rodríguez‐San‐Miguel, David ; Ramos, Mar ; Vismara, Rebecca ; Zamora, Félix ; Lorenzo, Encarnación ; Segura, José L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4240-f73b2eebc7900a5a04da2aab0afc5efe36c8acb1312dfcd234dd45cd6b0edbe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Analytical chemistry</topic><topic>Chemical reduction</topic><topic>Chemical Sciences</topic><topic>COF</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>Frameworks</topic><topic>H2O2</topic><topic>Hydrogen peroxide</topic><topic>Hydrophobicity</topic><topic>Interlayers</topic><topic>Material chemistry</topic><topic>Mathematical analysis</topic><topic>or physical chemistry</topic><topic>ORR</topic><topic>Oxygen reduction reactions</topic><topic>Polymers</topic><topic>Reaction mechanisms</topic><topic>Synthesis</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez‐Fernández, Marcos</creatorcontrib><creatorcontrib>Martínez‐Periñán, Emiliano</creatorcontrib><creatorcontrib>Peña Ruigómez, Alejandro</creatorcontrib><creatorcontrib>Cabrera‐Trujillo, Jorge J.</creatorcontrib><creatorcontrib>Navarro, Jorge A. R.</creatorcontrib><creatorcontrib>Aguilar‐Galindo, Fernando</creatorcontrib><creatorcontrib>Rodríguez‐San‐Miguel, David</creatorcontrib><creatorcontrib>Ramos, Mar</creatorcontrib><creatorcontrib>Vismara, Rebecca</creatorcontrib><creatorcontrib>Zamora, Félix</creatorcontrib><creatorcontrib>Lorenzo, Encarnación</creatorcontrib><creatorcontrib>Segura, José L.</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez‐Fernández, Marcos</au><au>Martínez‐Periñán, Emiliano</au><au>Peña Ruigómez, Alejandro</au><au>Cabrera‐Trujillo, Jorge J.</au><au>Navarro, Jorge A. R.</au><au>Aguilar‐Galindo, Fernando</au><au>Rodríguez‐San‐Miguel, David</au><au>Ramos, Mar</au><au>Vismara, Rebecca</au><au>Zamora, Félix</au><au>Lorenzo, Encarnación</au><au>Segura, José L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>62</volume><issue>47</issue><spage>e202313940</spage><epage>n/a</epage><pages>e202313940-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In this study, we present a novel approach for the synthesis of covalent organic frameworks (COFs) that overcomes the common limitations of non‐scalable solvothermal procedures. Our method allows for the room‐temperature and scalable synthesis of a highly fluorinated DFTAPB‐TFTA‐COF, which exhibits intrinsic hydrophobicity. We used DFT‐based calculations to elucidate the role of the fluorine atoms in enhancing the crystallinity of the material through corrugation effects, resulting in maximized interlayer interactions, as disclosed both from PXRD structural resolution and theoretical simulations. We further investigated the electrocatalytic properties of this material towards the oxygen reduction reaction (ORR). Our results show that the fluorinated COF produces hydrogen peroxide selectively with low overpotential (0.062 V) and high turnover frequency (0.0757 s−1) without the addition of any conductive additives. These values are among the best reported for non‐pyrolyzed and metal‐free electrocatalysts. Finally, we employed DFT‐based calculations to analyse the reaction mechanism, highlighting the crucial role of the fluorine atom in the active site assembly. Our findings shed light on the potential of fluorinated COFs as promising electrocatalysts for the ORR, as well as their potential applications in other fields.
Covalent organic frameworks (COFs) are a class of crystalline polymers. Herein we report the room temperature and scalable synthesis of two isostructural COFs, modulated by the introduction of fluorine atoms, obtaining an extended framework with record number of F per pore. The substitution produces a dramatical increase of selectivity for the oxygen reduction reaction electrocatalysis, with a response comparable to other noble electrocatalysts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202313940</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-3122-3381</orcidid><orcidid>https://orcid.org/0000-0001-8432-9652</orcidid><orcidid>https://orcid.org/0000-0002-8359-0397</orcidid><orcidid>https://orcid.org/0000-0002-3360-1019</orcidid><orcidid>https://orcid.org/0000-0002-1158-5409</orcidid><orcidid>https://orcid.org/0000-0003-2751-5592</orcidid><orcidid>https://orcid.org/0000-0002-1476-2175</orcidid><orcidid>https://orcid.org/0000-0001-7447-491X</orcidid><orcidid>https://orcid.org/0000-0001-9474-7671</orcidid><orcidid>https://orcid.org/0000-0001-7529-5120</orcidid><orcidid>https://orcid.org/0000-0001-8988-4268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-11, Vol.62 (47), p.e202313940-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04264935v1 |
source | Wiley-Blackwell Full Collection |
subjects | Additives Analytical chemistry Chemical reduction Chemical Sciences COF Electrocatalysis Electrocatalysts Fluorination Fluorine Frameworks H2O2 Hydrogen peroxide Hydrophobicity Interlayers Material chemistry Mathematical analysis or physical chemistry ORR Oxygen reduction reactions Polymers Reaction mechanisms Synthesis Theoretical and |
title | Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Synthesis%20and%20Electrocatalytic%20Performance%20of%20Highly%20Fluorinated%20Covalent%20Organic%20Frameworks%20for%20Oxygen%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mart%C3%ADnez%E2%80%90Fern%C3%A1ndez,%20Marcos&rft.date=2023-11-20&rft.volume=62&rft.issue=47&rft.spage=e202313940&rft.epage=n/a&rft.pages=e202313940-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202313940&rft_dat=%3Cproquest_hal_p%3E2889809701%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889809701&rft_id=info:pmid/&rfr_iscdi=true |