De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks
The widespread use of high throughput genome sequencing technologies has resulted in a significant increase in the number of available sequences, creating new challenges for genome annotation and prediction of protein-coding genes in terms of error detection and quality control. Multiple Sequence Al...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-08, Vol.53 (15), p.18806-18820 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18820 |
---|---|
container_issue | 15 |
container_start_page | 18806 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 53 |
creator | Khodji, Hiba Collet, Pierre Thompson, Julie D. Jeannin-Girardon, Anne |
description | The widespread use of high throughput genome sequencing technologies has resulted in a significant increase in the number of available sequences, creating new challenges for genome annotation and prediction of protein-coding genes in terms of error detection and quality control. Multiple Sequence Alignments (MSAs) of the predicted protein sequences provide important contextual information that can be used to distinguish errors (caused by artifacts in the raw genome data, badly predicted gene sequences, or the alignment methods themselves) from true biological events. This can be achieved either by human expertise or by statistical analysis of the sequence data. Here, we propose a new approach that uses visual representations of MSAs as inputs for Convolutional Neural Networks (CNN) to classify MSAs into erroneous and non-erroneous categories. The MSAs are extracted from a unique in-house dataset, in which errors are carefully identified. Our model, called De-MISTED (Deep learning for MultIple Sequence alignmenTs Error Detection) identifies MSAs containing erroneous sequences with high accuracy (87%) and sensitivity (92%). Visual explanation techniques show that our model correctly identifies the position of multiple errors of different types (insertions, deletions and mismatches). Close examination of the data showed that our model can also identify errors that were not previously annotated in the data. The De-MISTED method thus contributes to a more robust exploitation of the genome data. |
doi_str_mv | 10.1007/s10489-022-04390-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04253859v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834346101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-3369cf108136f0ede8ac66a9dc8444a0cd36a8c648449ec947556bbbcc8192ab3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1EJZbCH-BkiRMH03HsODa3qi3tSos4tEjcLMc7WVKy9uJJivj3zTYV3Dg9zeh7TzN6jL2T8FECNGckQVsnoKoEaOVANC_YStaNEo12zUu2AldpYYz7_oq9JroHAKVArhhdoviyvr27uvzE1_uwQ9EGwi2PQyDquz6Gsc-J545jKTlhnojvp2HsDwNywl8Tpog8DP0u7TGNxCfq047HnB7yMB29YeAJp_Ik4-9cftIbdtKFgfDts56yb5-v7i5uxObr9frifCOi0nYUShkXOwlWKtMBbtGGaExw22i11gHiVplgo9Hz6DA63dS1ads2RitdFVp1yj4suT_C4A-l34fyx-fQ-5vzjT_uQFe1srV7kDP7fmEPJc9P0ejv81Tm48lXVmmljYQjVS1ULJmoYPc3VoI_FuGXIvxchH8qwjezSS0mmuG0w_Iv-j-uR4QUjJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834346101</pqid></control><display><type>article</type><title>De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks</title><source>SpringerLink Journals</source><creator>Khodji, Hiba ; Collet, Pierre ; Thompson, Julie D. ; Jeannin-Girardon, Anne</creator><creatorcontrib>Khodji, Hiba ; Collet, Pierre ; Thompson, Julie D. ; Jeannin-Girardon, Anne</creatorcontrib><description>The widespread use of high throughput genome sequencing technologies has resulted in a significant increase in the number of available sequences, creating new challenges for genome annotation and prediction of protein-coding genes in terms of error detection and quality control. Multiple Sequence Alignments (MSAs) of the predicted protein sequences provide important contextual information that can be used to distinguish errors (caused by artifacts in the raw genome data, badly predicted gene sequences, or the alignment methods themselves) from true biological events. This can be achieved either by human expertise or by statistical analysis of the sequence data. Here, we propose a new approach that uses visual representations of MSAs as inputs for Convolutional Neural Networks (CNN) to classify MSAs into erroneous and non-erroneous categories. The MSAs are extracted from a unique in-house dataset, in which errors are carefully identified. Our model, called De-MISTED (Deep learning for MultIple Sequence alignmenTs Error Detection) identifies MSAs containing erroneous sequences with high accuracy (87%) and sensitivity (92%). Visual explanation techniques show that our model correctly identifies the position of multiple errors of different types (insertions, deletions and mismatches). Close examination of the data showed that our model can also identify errors that were not previously annotated in the data. The De-MISTED method thus contributes to a more robust exploitation of the genome data.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-022-04390-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annotations ; Artificial Intelligence ; Artificial neural networks ; Computer Science ; Error correction & detection ; Error detection ; Gene sequencing ; Genomes ; Image classification ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Neural networks ; Processes ; Proteins ; Quality control ; Statistical analysis</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2023-08, Vol.53 (15), p.18806-18820</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-3369cf108136f0ede8ac66a9dc8444a0cd36a8c648449ec947556bbbcc8192ab3</cites><orcidid>0000-0002-5525-4863 ; 0000-0003-4893-3478 ; 0000-0003-4691-904X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-022-04390-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-022-04390-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://cnrs.hal.science/hal-04253859$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khodji, Hiba</creatorcontrib><creatorcontrib>Collet, Pierre</creatorcontrib><creatorcontrib>Thompson, Julie D.</creatorcontrib><creatorcontrib>Jeannin-Girardon, Anne</creatorcontrib><title>De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>The widespread use of high throughput genome sequencing technologies has resulted in a significant increase in the number of available sequences, creating new challenges for genome annotation and prediction of protein-coding genes in terms of error detection and quality control. Multiple Sequence Alignments (MSAs) of the predicted protein sequences provide important contextual information that can be used to distinguish errors (caused by artifacts in the raw genome data, badly predicted gene sequences, or the alignment methods themselves) from true biological events. This can be achieved either by human expertise or by statistical analysis of the sequence data. Here, we propose a new approach that uses visual representations of MSAs as inputs for Convolutional Neural Networks (CNN) to classify MSAs into erroneous and non-erroneous categories. The MSAs are extracted from a unique in-house dataset, in which errors are carefully identified. Our model, called De-MISTED (Deep learning for MultIple Sequence alignmenTs Error Detection) identifies MSAs containing erroneous sequences with high accuracy (87%) and sensitivity (92%). Visual explanation techniques show that our model correctly identifies the position of multiple errors of different types (insertions, deletions and mismatches). Close examination of the data showed that our model can also identify errors that were not previously annotated in the data. The De-MISTED method thus contributes to a more robust exploitation of the genome data.</description><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Error correction & detection</subject><subject>Error detection</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Processes</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Statistical analysis</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFv1DAQhS1EJZbCH-BkiRMH03HsODa3qi3tSos4tEjcLMc7WVKy9uJJivj3zTYV3Dg9zeh7TzN6jL2T8FECNGckQVsnoKoEaOVANC_YStaNEo12zUu2AldpYYz7_oq9JroHAKVArhhdoviyvr27uvzE1_uwQ9EGwi2PQyDquz6Gsc-J545jKTlhnojvp2HsDwNywl8Tpog8DP0u7TGNxCfq047HnB7yMB29YeAJp_Ik4-9cftIbdtKFgfDts56yb5-v7i5uxObr9frifCOi0nYUShkXOwlWKtMBbtGGaExw22i11gHiVplgo9Hz6DA63dS1ads2RitdFVp1yj4suT_C4A-l34fyx-fQ-5vzjT_uQFe1srV7kDP7fmEPJc9P0ejv81Tm48lXVmmljYQjVS1ULJmoYPc3VoI_FuGXIvxchH8qwjezSS0mmuG0w_Iv-j-uR4QUjJQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Khodji, Hiba</creator><creator>Collet, Pierre</creator><creator>Thompson, Julie D.</creator><creator>Jeannin-Girardon, Anne</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5525-4863</orcidid><orcidid>https://orcid.org/0000-0003-4893-3478</orcidid><orcidid>https://orcid.org/0000-0003-4691-904X</orcidid></search><sort><creationdate>20230801</creationdate><title>De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks</title><author>Khodji, Hiba ; Collet, Pierre ; Thompson, Julie D. ; Jeannin-Girardon, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-3369cf108136f0ede8ac66a9dc8444a0cd36a8c648449ec947556bbbcc8192ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Error correction & detection</topic><topic>Error detection</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Processes</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodji, Hiba</creatorcontrib><creatorcontrib>Collet, Pierre</creatorcontrib><creatorcontrib>Thompson, Julie D.</creatorcontrib><creatorcontrib>Jeannin-Girardon, Anne</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodji, Hiba</au><au>Collet, Pierre</au><au>Thompson, Julie D.</au><au>Jeannin-Girardon, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>53</volume><issue>15</issue><spage>18806</spage><epage>18820</epage><pages>18806-18820</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>The widespread use of high throughput genome sequencing technologies has resulted in a significant increase in the number of available sequences, creating new challenges for genome annotation and prediction of protein-coding genes in terms of error detection and quality control. Multiple Sequence Alignments (MSAs) of the predicted protein sequences provide important contextual information that can be used to distinguish errors (caused by artifacts in the raw genome data, badly predicted gene sequences, or the alignment methods themselves) from true biological events. This can be achieved either by human expertise or by statistical analysis of the sequence data. Here, we propose a new approach that uses visual representations of MSAs as inputs for Convolutional Neural Networks (CNN) to classify MSAs into erroneous and non-erroneous categories. The MSAs are extracted from a unique in-house dataset, in which errors are carefully identified. Our model, called De-MISTED (Deep learning for MultIple Sequence alignmenTs Error Detection) identifies MSAs containing erroneous sequences with high accuracy (87%) and sensitivity (92%). Visual explanation techniques show that our model correctly identifies the position of multiple errors of different types (insertions, deletions and mismatches). Close examination of the data showed that our model can also identify errors that were not previously annotated in the data. The De-MISTED method thus contributes to a more robust exploitation of the genome data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-022-04390-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5525-4863</orcidid><orcidid>https://orcid.org/0000-0003-4893-3478</orcidid><orcidid>https://orcid.org/0000-0003-4691-904X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2023-08, Vol.53 (15), p.18806-18820 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04253859v1 |
source | SpringerLink Journals |
subjects | Annotations Artificial Intelligence Artificial neural networks Computer Science Error correction & detection Error detection Gene sequencing Genomes Image classification Machine learning Machines Manufacturing Mechanical Engineering Neural networks Processes Proteins Quality control Statistical analysis |
title | De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De-MISTED:%20Image-based%20classification%20of%20erroneous%20multiple%20sequence%20alignments%20using%20convolutional%20neural%20networks&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Khodji,%20Hiba&rft.date=2023-08-01&rft.volume=53&rft.issue=15&rft.spage=18806&rft.epage=18820&rft.pages=18806-18820&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-022-04390-7&rft_dat=%3Cproquest_hal_p%3E2834346101%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834346101&rft_id=info:pmid/&rfr_iscdi=true |