Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes

This contribution proposes a new rheology-based model for water-hammer wave propagation in visco-elastic pipes. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for the stress/strain relation, the pressure/longitudinal stress coupled wave system is derived. In this ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2023-10, Vol.562, p.117824, Article 117824
Hauptverfasser: Bayle, A., Rein, F., Plouraboué, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117824
container_title Journal of sound and vibration
container_volume 562
creator Bayle, A.
Rein, F.
Plouraboué, F.
description This contribution proposes a new rheology-based model for water-hammer wave propagation in visco-elastic pipes. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for the stress/strain relation, the pressure/longitudinal stress coupled wave system is derived. In this general framework, a visco-elastic Fluid–Structure Interaction (FSI) four equations model is derived by having four visco-elastic kernels associated with the non-local time response of the visco-elastic solid. The explicit dependence of these kernels with the material creep function and the pipe dimension is found. Considering a general linear visco-elastic rheology, the four visco-elastic kernels, and the corresponding creep function are explicitly derived in frequency and time-domain versus four visco-elastic parameters. For a given set of boundary conditions, a general analytical solution for the pressure/stress water hammer wave is obtained in frequency domain. The model’s predictions are successfully compared with experimental measurements as well as with other models adjusted to the same experimental data set by calibrating the model’s parameter. The proposed model can be used in many other contexts with the specific ability to distinguish the intrinsic visco-elastic rheology from the considered pipe geometry and boundary conditions. •Provide a fluid–structure-interaction water-hammer model for visco-elastic rheology•It involves new history-dependent visco-elastic response with time-convolution kernels.•It does not need Kelvin–Voigt calibrated parameters, but rheological ones.•The dispersive wave velocity is obtained explicitly versus rheological parameters.
doi_str_mv 10.1016/j.jsv.2023.117824
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04253476v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X23002730</els_id><sourcerecordid>S0022460X23002730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-b1c1e0f805cb8ace90a7dadbade6403b0fc2d3a2be9259b4143f6ec36e59f3873</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFYfwF22Libe-ckfrkpRKxTcKLgbJpObdkJM2pkk0p3v4Bv6JKZEXLq6cDnfgfMRcs0gZMDi2yqs_BBy4CJkLEm5PCEzBllE0yhOT8kMgHMqY3g7JxfeVwCQSSFnpHpwuO-xMYdg0O5gm03gttjW7eZAc-2xCMq6t8X355fvXG-63iG1TYdOm862jQ8-9IA-sE1Q2_0YpKWt65EarDctxVr7zppgZ3foL8lZqWuPV793Tl4f7l-WK7p-fnxaLtbUiER2NGeGIZQpRCZPtcEMdFLoItcFxhJEDqXhhdA8x4xHWS6ZFGWMRsQYZaVIEzEnN1PvVtdq5-z7uEu12qrVYq2OP5A8EjKJBzZm2ZQ1rvXeYfkHMFBHsapSo1h1FKsmsSNzNzE4jhgsOuWNHQ1iYR2aThWt_Yf-ARFlhRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes</title><source>Elsevier ScienceDirect Journals</source><creator>Bayle, A. ; Rein, F. ; Plouraboué, F.</creator><creatorcontrib>Bayle, A. ; Rein, F. ; Plouraboué, F.</creatorcontrib><description>This contribution proposes a new rheology-based model for water-hammer wave propagation in visco-elastic pipes. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for the stress/strain relation, the pressure/longitudinal stress coupled wave system is derived. In this general framework, a visco-elastic Fluid–Structure Interaction (FSI) four equations model is derived by having four visco-elastic kernels associated with the non-local time response of the visco-elastic solid. The explicit dependence of these kernels with the material creep function and the pipe dimension is found. Considering a general linear visco-elastic rheology, the four visco-elastic kernels, and the corresponding creep function are explicitly derived in frequency and time-domain versus four visco-elastic parameters. For a given set of boundary conditions, a general analytical solution for the pressure/stress water hammer wave is obtained in frequency domain. The model’s predictions are successfully compared with experimental measurements as well as with other models adjusted to the same experimental data set by calibrating the model’s parameter. The proposed model can be used in many other contexts with the specific ability to distinguish the intrinsic visco-elastic rheology from the considered pipe geometry and boundary conditions. •Provide a fluid–structure-interaction water-hammer model for visco-elastic rheology•It involves new history-dependent visco-elastic response with time-convolution kernels.•It does not need Kelvin–Voigt calibrated parameters, but rheological ones.•The dispersive wave velocity is obtained explicitly versus rheological parameters.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2023.117824</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Creeping-law ; Dispersive waves ; Engineering Sciences ; Fluid–structure-interactions ; Kelvin–Voigt ; Physics ; Polymer pipes ; Visco-elastic rheology ; Water-hammer</subject><ispartof>Journal of sound and vibration, 2023-10, Vol.562, p.117824, Article 117824</ispartof><rights>2023 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-b1c1e0f805cb8ace90a7dadbade6403b0fc2d3a2be9259b4143f6ec36e59f3873</citedby><cites>FETCH-LOGICAL-c374t-b1c1e0f805cb8ace90a7dadbade6403b0fc2d3a2be9259b4143f6ec36e59f3873</cites><orcidid>0000-0003-0349-4221 ; 0000-0002-7898-6274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2023.117824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04253476$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayle, A.</creatorcontrib><creatorcontrib>Rein, F.</creatorcontrib><creatorcontrib>Plouraboué, F.</creatorcontrib><title>Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes</title><title>Journal of sound and vibration</title><description>This contribution proposes a new rheology-based model for water-hammer wave propagation in visco-elastic pipes. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for the stress/strain relation, the pressure/longitudinal stress coupled wave system is derived. In this general framework, a visco-elastic Fluid–Structure Interaction (FSI) four equations model is derived by having four visco-elastic kernels associated with the non-local time response of the visco-elastic solid. The explicit dependence of these kernels with the material creep function and the pipe dimension is found. Considering a general linear visco-elastic rheology, the four visco-elastic kernels, and the corresponding creep function are explicitly derived in frequency and time-domain versus four visco-elastic parameters. For a given set of boundary conditions, a general analytical solution for the pressure/stress water hammer wave is obtained in frequency domain. The model’s predictions are successfully compared with experimental measurements as well as with other models adjusted to the same experimental data set by calibrating the model’s parameter. The proposed model can be used in many other contexts with the specific ability to distinguish the intrinsic visco-elastic rheology from the considered pipe geometry and boundary conditions. •Provide a fluid–structure-interaction water-hammer model for visco-elastic rheology•It involves new history-dependent visco-elastic response with time-convolution kernels.•It does not need Kelvin–Voigt calibrated parameters, but rheological ones.•The dispersive wave velocity is obtained explicitly versus rheological parameters.</description><subject>Creeping-law</subject><subject>Dispersive waves</subject><subject>Engineering Sciences</subject><subject>Fluid–structure-interactions</subject><subject>Kelvin–Voigt</subject><subject>Physics</subject><subject>Polymer pipes</subject><subject>Visco-elastic rheology</subject><subject>Water-hammer</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFYfwF22Libe-ckfrkpRKxTcKLgbJpObdkJM2pkk0p3v4Bv6JKZEXLq6cDnfgfMRcs0gZMDi2yqs_BBy4CJkLEm5PCEzBllE0yhOT8kMgHMqY3g7JxfeVwCQSSFnpHpwuO-xMYdg0O5gm03gttjW7eZAc-2xCMq6t8X355fvXG-63iG1TYdOm862jQ8-9IA-sE1Q2_0YpKWt65EarDctxVr7zppgZ3foL8lZqWuPV793Tl4f7l-WK7p-fnxaLtbUiER2NGeGIZQpRCZPtcEMdFLoItcFxhJEDqXhhdA8x4xHWS6ZFGWMRsQYZaVIEzEnN1PvVtdq5-z7uEu12qrVYq2OP5A8EjKJBzZm2ZQ1rvXeYfkHMFBHsapSo1h1FKsmsSNzNzE4jhgsOuWNHQ1iYR2aThWt_Yf-ARFlhRE</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Bayle, A.</creator><creator>Rein, F.</creator><creator>Plouraboué, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0349-4221</orcidid><orcidid>https://orcid.org/0000-0002-7898-6274</orcidid></search><sort><creationdate>20231013</creationdate><title>Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes</title><author>Bayle, A. ; Rein, F. ; Plouraboué, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-b1c1e0f805cb8ace90a7dadbade6403b0fc2d3a2be9259b4143f6ec36e59f3873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Creeping-law</topic><topic>Dispersive waves</topic><topic>Engineering Sciences</topic><topic>Fluid–structure-interactions</topic><topic>Kelvin–Voigt</topic><topic>Physics</topic><topic>Polymer pipes</topic><topic>Visco-elastic rheology</topic><topic>Water-hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayle, A.</creatorcontrib><creatorcontrib>Rein, F.</creatorcontrib><creatorcontrib>Plouraboué, F.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayle, A.</au><au>Rein, F.</au><au>Plouraboué, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes</atitle><jtitle>Journal of sound and vibration</jtitle><date>2023-10-13</date><risdate>2023</risdate><volume>562</volume><spage>117824</spage><pages>117824-</pages><artnum>117824</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This contribution proposes a new rheology-based model for water-hammer wave propagation in visco-elastic pipes. Using a long wavelength analysis and a generalized frequency-dependent Hooke-law for the stress/strain relation, the pressure/longitudinal stress coupled wave system is derived. In this general framework, a visco-elastic Fluid–Structure Interaction (FSI) four equations model is derived by having four visco-elastic kernels associated with the non-local time response of the visco-elastic solid. The explicit dependence of these kernels with the material creep function and the pipe dimension is found. Considering a general linear visco-elastic rheology, the four visco-elastic kernels, and the corresponding creep function are explicitly derived in frequency and time-domain versus four visco-elastic parameters. For a given set of boundary conditions, a general analytical solution for the pressure/stress water hammer wave is obtained in frequency domain. The model’s predictions are successfully compared with experimental measurements as well as with other models adjusted to the same experimental data set by calibrating the model’s parameter. The proposed model can be used in many other contexts with the specific ability to distinguish the intrinsic visco-elastic rheology from the considered pipe geometry and boundary conditions. •Provide a fluid–structure-interaction water-hammer model for visco-elastic rheology•It involves new history-dependent visco-elastic response with time-convolution kernels.•It does not need Kelvin–Voigt calibrated parameters, but rheological ones.•The dispersive wave velocity is obtained explicitly versus rheological parameters.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2023.117824</doi><orcidid>https://orcid.org/0000-0003-0349-4221</orcidid><orcidid>https://orcid.org/0000-0002-7898-6274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2023-10, Vol.562, p.117824, Article 117824
issn 0022-460X
1095-8568
language eng
recordid cdi_hal_primary_oai_HAL_hal_04253476v1
source Elsevier ScienceDirect Journals
subjects Creeping-law
Dispersive waves
Engineering Sciences
Fluid–structure-interactions
Kelvin–Voigt
Physics
Polymer pipes
Visco-elastic rheology
Water-hammer
title Frequency varying rheology-based fluid–structure-interactions waves in liquid-filled visco-elastic pipes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20varying%20rheology-based%20fluid%E2%80%93structure-interactions%20waves%20in%20liquid-filled%20visco-elastic%20pipes&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Bayle,%20A.&rft.date=2023-10-13&rft.volume=562&rft.spage=117824&rft.pages=117824-&rft.artnum=117824&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2023.117824&rft_dat=%3Celsevier_hal_p%3ES0022460X23002730%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022460X23002730&rfr_iscdi=true