Optimal scenario for road evacuation in an urban environment

How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2024
Hauptverfasser: Bestard, Mickael, Franck, Emmanuel, Navoret, Laurent, Privat, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume
creator Bestard, Mickael
Franck, Emmanuel
Navoret, Laurent
Privat, Yannick
description How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.
doi_str_mv 10.48550/arxiv.2310.15359
format Article
fullrecord <record><control><sourceid>hal_arxiv</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04253010v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04253010v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1019-4afc6d08d444942ecf0e828bac4a72bf69c0e2ecea3bb8bfc69a57b5b1d5548d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRMFZ_gCf36iF19qvJgpdSrBUCveg5zG42uJJuyiYN-u_dtuJlBh6PYXiE3DOYy1IpeML47ac5FwkwJZS-IBmTHHINQl-SDEDKnPNCXZObYfgCgIKByMjzdj_6HXZ0sC5g9D1t-0hjjw11E9oDjr4P1AeKgR6iSdOFycc-7FwYb8lVi93g7v72jHysX95Xm7zavr6tllWODJjOJbZ20UDZSCm15M624EpeGrQSC27ahbbgEnYojClNkjWqwijDGqVk2YgZeTzf_cSu3sf0b_ype_T1ZlnVRwaSKwEMJp7ch7N7CvJvH8PUpzDiF98DV-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal scenario for road evacuation in an urban environment</title><source>Springer Nature - Complete Springer Journals</source><source>arXiv.org</source><creator>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creator><creatorcontrib>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creatorcontrib><description>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.48550/arxiv.2310.15359</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Analysis of PDEs ; Mathematics ; Mathematics - Optimization and Control ; Numerical Analysis ; Optimization and Control</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2024</ispartof><rights>http://creativecommons.org/publicdomain/zero/1.0</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-5753-2241 ; 0000-0002-2039-7223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>228,230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://doi.org/10.48550/arXiv.2310.15359$$DView paper in arXiv$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04253010$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><title>Optimal scenario for road evacuation in an urban environment</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><subject>Mathematics - Optimization and Control</subject><subject>Numerical Analysis</subject><subject>Optimization and Control</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>GOX</sourceid><recordid>eNo9kE1Lw0AQQBdRMFZ_gCf36iF19qvJgpdSrBUCveg5zG42uJJuyiYN-u_dtuJlBh6PYXiE3DOYy1IpeML47ac5FwkwJZS-IBmTHHINQl-SDEDKnPNCXZObYfgCgIKByMjzdj_6HXZ0sC5g9D1t-0hjjw11E9oDjr4P1AeKgR6iSdOFycc-7FwYb8lVi93g7v72jHysX95Xm7zavr6tllWODJjOJbZ20UDZSCm15M624EpeGrQSC27ahbbgEnYojClNkjWqwijDGqVk2YgZeTzf_cSu3sf0b_ype_T1ZlnVRwaSKwEMJp7ch7N7CvJvH8PUpzDiF98DV-M</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bestard, Mickael</creator><creator>Franck, Emmanuel</creator><creator>Navoret, Laurent</creator><creator>Privat, Yannick</creator><general>Springer Verlag</general><scope>AKZ</scope><scope>GOX</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0000-5753-2241</orcidid><orcidid>https://orcid.org/0000-0002-2039-7223</orcidid></search><sort><creationdate>2024</creationdate><title>Optimal scenario for road evacuation in an urban environment</title><author>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1019-4afc6d08d444942ecf0e828bac4a72bf69c0e2ecea3bb8bfc69a57b5b1d5548d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><topic>Mathematics - Optimization and Control</topic><topic>Numerical Analysis</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><collection>arXiv Mathematics</collection><collection>arXiv.org</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestard, Mickael</au><au>Franck, Emmanuel</au><au>Navoret, Laurent</au><au>Privat, Yannick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal scenario for road evacuation in an urban environment</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>2024</date><risdate>2024</risdate><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, semi-discretized in space and decide to give ourselves the possibility to control the flow at junctions. Our target is to smooth the traffic along a given path within a fixed time. A parsimony constraint is imposed on the controls, in order to ensure that the optimal strategies are feasible in practice. We perform an analysis of the resulting optimal control problem, proving the existence of an optimal control and deriving optimality conditions, which we rewrite as a single functional equation. We then use this formulation to derive a new mixed algorithm interpreting it as a mix between two methods: a descent method combined with a fixed point method allowing global perturbations. We verify with numerical experiments the efficiency of this method on examples of graphs, first simple, then more complex. We highlight the efficiency of our approach by comparing it to standard methods. We propose an open source code implementing this approach in the Julia language.</abstract><pub>Springer Verlag</pub><doi>10.48550/arxiv.2310.15359</doi><orcidid>https://orcid.org/0009-0000-5753-2241</orcidid><orcidid>https://orcid.org/0000-0002-2039-7223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2024
issn 0044-2275
1420-9039
language eng
recordid cdi_hal_primary_oai_HAL_hal_04253010v2
source Springer Nature - Complete Springer Journals; arXiv.org
subjects Analysis of PDEs
Mathematics
Mathematics - Optimization and Control
Numerical Analysis
Optimization and Control
title Optimal scenario for road evacuation in an urban environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_arxiv&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20scenario%20for%20road%20evacuation%20in%20an%20urban%20environment&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Bestard,%20Mickael&rft.date=2024&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.48550/arxiv.2310.15359&rft_dat=%3Chal_arxiv%3Eoai_HAL_hal_04253010v2%3C/hal_arxiv%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true