Optimal scenario for road evacuation in an urban environment
How to free a road from vehicle traffic as efficiently as possible and in a given time, in order to allow for example the passage of emergency vehicles? We are interested in this question which we reformulate as an optimal control problem. We consider a macroscopic road traffic model on networks, se...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2024 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | |
creator | Bestard, Mickael Franck, Emmanuel Navoret, Laurent Privat, Yannick |
description | How to free a road from vehicle traffic as efficiently as possible and in a
given time, in order to allow for example the passage of emergency vehicles? We
are interested in this question which we reformulate as an optimal control
problem. We consider a macroscopic road traffic model on networks,
semi-discretized in space and decide to give ourselves the possibility to
control the flow at junctions. Our target is to smooth the traffic along a
given path within a fixed time. A parsimony constraint is imposed on the
controls, in order to ensure that the optimal strategies are feasible in
practice. We perform an analysis of the resulting optimal control problem,
proving the existence of an optimal control and deriving optimality conditions,
which we rewrite as a single functional equation. We then use this formulation
to derive a new mixed algorithm interpreting it as a mix between two methods: a
descent method combined with a fixed point method allowing global
perturbations. We verify with numerical experiments the efficiency of this
method on examples of graphs, first simple, then more complex. We highlight the
efficiency of our approach by comparing it to standard methods. We propose an
open source code implementing this approach in the Julia language. |
doi_str_mv | 10.48550/arxiv.2310.15359 |
format | Article |
fullrecord | <record><control><sourceid>hal_arxiv</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04253010v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04253010v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1019-4afc6d08d444942ecf0e828bac4a72bf69c0e2ecea3bb8bfc69a57b5b1d5548d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRMFZ_gCf36iF19qvJgpdSrBUCveg5zG42uJJuyiYN-u_dtuJlBh6PYXiE3DOYy1IpeML47ac5FwkwJZS-IBmTHHINQl-SDEDKnPNCXZObYfgCgIKByMjzdj_6HXZ0sC5g9D1t-0hjjw11E9oDjr4P1AeKgR6iSdOFycc-7FwYb8lVi93g7v72jHysX95Xm7zavr6tllWODJjOJbZ20UDZSCm15M624EpeGrQSC27ahbbgEnYojClNkjWqwijDGqVk2YgZeTzf_cSu3sf0b_ype_T1ZlnVRwaSKwEMJp7ch7N7CvJvH8PUpzDiF98DV-M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal scenario for road evacuation in an urban environment</title><source>Springer Nature - Complete Springer Journals</source><source>arXiv.org</source><creator>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creator><creatorcontrib>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</creatorcontrib><description>How to free a road from vehicle traffic as efficiently as possible and in a
given time, in order to allow for example the passage of emergency vehicles? We
are interested in this question which we reformulate as an optimal control
problem. We consider a macroscopic road traffic model on networks,
semi-discretized in space and decide to give ourselves the possibility to
control the flow at junctions. Our target is to smooth the traffic along a
given path within a fixed time. A parsimony constraint is imposed on the
controls, in order to ensure that the optimal strategies are feasible in
practice. We perform an analysis of the resulting optimal control problem,
proving the existence of an optimal control and deriving optimality conditions,
which we rewrite as a single functional equation. We then use this formulation
to derive a new mixed algorithm interpreting it as a mix between two methods: a
descent method combined with a fixed point method allowing global
perturbations. We verify with numerical experiments the efficiency of this
method on examples of graphs, first simple, then more complex. We highlight the
efficiency of our approach by comparing it to standard methods. We propose an
open source code implementing this approach in the Julia language.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.48550/arxiv.2310.15359</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Analysis of PDEs ; Mathematics ; Mathematics - Optimization and Control ; Numerical Analysis ; Optimization and Control</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2024</ispartof><rights>http://creativecommons.org/publicdomain/zero/1.0</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-5753-2241 ; 0000-0002-2039-7223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>228,230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://doi.org/10.48550/arXiv.2310.15359$$DView paper in arXiv$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04253010$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><title>Optimal scenario for road evacuation in an urban environment</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>How to free a road from vehicle traffic as efficiently as possible and in a
given time, in order to allow for example the passage of emergency vehicles? We
are interested in this question which we reformulate as an optimal control
problem. We consider a macroscopic road traffic model on networks,
semi-discretized in space and decide to give ourselves the possibility to
control the flow at junctions. Our target is to smooth the traffic along a
given path within a fixed time. A parsimony constraint is imposed on the
controls, in order to ensure that the optimal strategies are feasible in
practice. We perform an analysis of the resulting optimal control problem,
proving the existence of an optimal control and deriving optimality conditions,
which we rewrite as a single functional equation. We then use this formulation
to derive a new mixed algorithm interpreting it as a mix between two methods: a
descent method combined with a fixed point method allowing global
perturbations. We verify with numerical experiments the efficiency of this
method on examples of graphs, first simple, then more complex. We highlight the
efficiency of our approach by comparing it to standard methods. We propose an
open source code implementing this approach in the Julia language.</description><subject>Analysis of PDEs</subject><subject>Mathematics</subject><subject>Mathematics - Optimization and Control</subject><subject>Numerical Analysis</subject><subject>Optimization and Control</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>GOX</sourceid><recordid>eNo9kE1Lw0AQQBdRMFZ_gCf36iF19qvJgpdSrBUCveg5zG42uJJuyiYN-u_dtuJlBh6PYXiE3DOYy1IpeML47ac5FwkwJZS-IBmTHHINQl-SDEDKnPNCXZObYfgCgIKByMjzdj_6HXZ0sC5g9D1t-0hjjw11E9oDjr4P1AeKgR6iSdOFycc-7FwYb8lVi93g7v72jHysX95Xm7zavr6tllWODJjOJbZ20UDZSCm15M624EpeGrQSC27ahbbgEnYojClNkjWqwijDGqVk2YgZeTzf_cSu3sf0b_ype_T1ZlnVRwaSKwEMJp7ch7N7CvJvH8PUpzDiF98DV-M</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bestard, Mickael</creator><creator>Franck, Emmanuel</creator><creator>Navoret, Laurent</creator><creator>Privat, Yannick</creator><general>Springer Verlag</general><scope>AKZ</scope><scope>GOX</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0000-5753-2241</orcidid><orcidid>https://orcid.org/0000-0002-2039-7223</orcidid></search><sort><creationdate>2024</creationdate><title>Optimal scenario for road evacuation in an urban environment</title><author>Bestard, Mickael ; Franck, Emmanuel ; Navoret, Laurent ; Privat, Yannick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1019-4afc6d08d444942ecf0e828bac4a72bf69c0e2ecea3bb8bfc69a57b5b1d5548d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis of PDEs</topic><topic>Mathematics</topic><topic>Mathematics - Optimization and Control</topic><topic>Numerical Analysis</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bestard, Mickael</creatorcontrib><creatorcontrib>Franck, Emmanuel</creatorcontrib><creatorcontrib>Navoret, Laurent</creatorcontrib><creatorcontrib>Privat, Yannick</creatorcontrib><collection>arXiv Mathematics</collection><collection>arXiv.org</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bestard, Mickael</au><au>Franck, Emmanuel</au><au>Navoret, Laurent</au><au>Privat, Yannick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal scenario for road evacuation in an urban environment</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>2024</date><risdate>2024</risdate><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>How to free a road from vehicle traffic as efficiently as possible and in a
given time, in order to allow for example the passage of emergency vehicles? We
are interested in this question which we reformulate as an optimal control
problem. We consider a macroscopic road traffic model on networks,
semi-discretized in space and decide to give ourselves the possibility to
control the flow at junctions. Our target is to smooth the traffic along a
given path within a fixed time. A parsimony constraint is imposed on the
controls, in order to ensure that the optimal strategies are feasible in
practice. We perform an analysis of the resulting optimal control problem,
proving the existence of an optimal control and deriving optimality conditions,
which we rewrite as a single functional equation. We then use this formulation
to derive a new mixed algorithm interpreting it as a mix between two methods: a
descent method combined with a fixed point method allowing global
perturbations. We verify with numerical experiments the efficiency of this
method on examples of graphs, first simple, then more complex. We highlight the
efficiency of our approach by comparing it to standard methods. We propose an
open source code implementing this approach in the Julia language.</abstract><pub>Springer Verlag</pub><doi>10.48550/arxiv.2310.15359</doi><orcidid>https://orcid.org/0009-0000-5753-2241</orcidid><orcidid>https://orcid.org/0000-0002-2039-7223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2024 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04253010v2 |
source | Springer Nature - Complete Springer Journals; arXiv.org |
subjects | Analysis of PDEs Mathematics Mathematics - Optimization and Control Numerical Analysis Optimization and Control |
title | Optimal scenario for road evacuation in an urban environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_arxiv&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20scenario%20for%20road%20evacuation%20in%20an%20urban%20environment&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Bestard,%20Mickael&rft.date=2024&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.48550/arxiv.2310.15359&rft_dat=%3Chal_arxiv%3Eoai_HAL_hal_04253010v2%3C/hal_arxiv%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |