On the distance-edge-monitoring numbers of graphs

Foucaud et al. [Discrete Appl. Math. 319 (2022), 424-438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2024-01, Vol.342, p.153-167
Hauptverfasser: Yang, Chenxu, Klasing, Ralf, Mao, Yaping, Deng, Xingchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 153
container_title Discrete Applied Mathematics
container_volume 342
creator Yang, Chenxu
Klasing, Ralf
Mao, Yaping
Deng, Xingchao
description Foucaud et al. [Discrete Appl. Math. 319 (2022), 424-438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) ≠ d G−e (x, y). For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3. In addition, we give some properties of the graph G with dem(G) = n − 2.
doi_str_mv 10.1016/j.dam.2023.09.012
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04242344v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04242344v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04242344v13</originalsourceid><addsrcrecordid>eNqVir0KwjAYADMoWH8ewC2rQ2K-NJQ6iigdBBcHtxBt2qY0SUmq4NtbwRfwloPjEFoDo8Ag27a0VJZyxlPKdpQBn6Bk7BnhkN9maB5jy0YgzxIEF4eHRuPSxEG5hya6rDWx3pnBB-Nq7J72rkPEvsJ1UH0Tl2haqS7q1c8LtDkdr4eCNKqTfTBWhbf0yshif5bfxgQXPBXiBek_7wcj4Tx_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the distance-edge-monitoring numbers of graphs</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, Chenxu ; Klasing, Ralf ; Mao, Yaping ; Deng, Xingchao</creator><creatorcontrib>Yang, Chenxu ; Klasing, Ralf ; Mao, Yaping ; Deng, Xingchao</creatorcontrib><description>Foucaud et al. [Discrete Appl. Math. 319 (2022), 424-438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) ≠ d G−e (x, y). For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3. In addition, we give some properties of the graph G with dem(G) = n − 2.</description><identifier>ISSN: 0166-218X</identifier><identifier>DOI: 10.1016/j.dam.2023.09.012</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Combinatorics ; Computer Science ; Data Structures and Algorithms ; Mathematics</subject><ispartof>Discrete Applied Mathematics, 2024-01, Vol.342, p.153-167</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04242344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chenxu</creatorcontrib><creatorcontrib>Klasing, Ralf</creatorcontrib><creatorcontrib>Mao, Yaping</creatorcontrib><creatorcontrib>Deng, Xingchao</creatorcontrib><title>On the distance-edge-monitoring numbers of graphs</title><title>Discrete Applied Mathematics</title><description>Foucaud et al. [Discrete Appl. Math. 319 (2022), 424-438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) ≠ d G−e (x, y). For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3. In addition, we give some properties of the graph G with dem(G) = n − 2.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Mathematics</subject><issn>0166-218X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAYADMoWH8ewC2rQ2K-NJQ6iigdBBcHtxBt2qY0SUmq4NtbwRfwloPjEFoDo8Ag27a0VJZyxlPKdpQBn6Bk7BnhkN9maB5jy0YgzxIEF4eHRuPSxEG5hya6rDWx3pnBB-Nq7J72rkPEvsJ1UH0Tl2haqS7q1c8LtDkdr4eCNKqTfTBWhbf0yshif5bfxgQXPBXiBek_7wcj4Tx_</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Yang, Chenxu</creator><creator>Klasing, Ralf</creator><creator>Mao, Yaping</creator><creator>Deng, Xingchao</creator><general>Elsevier</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>202401</creationdate><title>On the distance-edge-monitoring numbers of graphs</title><author>Yang, Chenxu ; Klasing, Ralf ; Mao, Yaping ; Deng, Xingchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04242344v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chenxu</creatorcontrib><creatorcontrib>Klasing, Ralf</creatorcontrib><creatorcontrib>Mao, Yaping</creatorcontrib><creatorcontrib>Deng, Xingchao</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chenxu</au><au>Klasing, Ralf</au><au>Mao, Yaping</au><au>Deng, Xingchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the distance-edge-monitoring numbers of graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2024-01</date><risdate>2024</risdate><volume>342</volume><spage>153</spage><epage>167</epage><pages>153-167</pages><issn>0166-218X</issn><abstract>Foucaud et al. [Discrete Appl. Math. 319 (2022), 424-438] recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a vertex y of V (G) such that d G (x, y) ≠ d G−e (x, y). For a vertex x, let EM (x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM (x), dem(G), respectively, and extremal graphs attaining the bounds are characterized. We also characterize the graphs with dem(G) = 3. In addition, we give some properties of the graph G with dem(G) = n − 2.</abstract><pub>Elsevier</pub><doi>10.1016/j.dam.2023.09.012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2024-01, Vol.342, p.153-167
issn 0166-218X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04242344v1
source Elsevier ScienceDirect Journals
subjects Combinatorics
Computer Science
Data Structures and Algorithms
Mathematics
title On the distance-edge-monitoring numbers of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20distance-edge-monitoring%20numbers%20of%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Yang,%20Chenxu&rft.date=2024-01&rft.volume=342&rft.spage=153&rft.epage=167&rft.pages=153-167&rft.issn=0166-218X&rft_id=info:doi/10.1016/j.dam.2023.09.012&rft_dat=%3Chal%3Eoai_HAL_hal_04242344v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true