Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC

Context. The 21 cm hydrogen line is arguably one of the most powerful probes with which to explore the Universe, from recombination to the present times. To recover it, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The Baryo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2023-03, Vol.671
Hauptverfasser: de Mericia, Eduardo, Santos, Larissa, Wuensche, Carlos Alexandre, Liccardo, Vincenzo, Novaes, Camila, Delabrouille, Jacques, Remazeilles, Mathieu, Abdalla, Filipe, Feng, Chang, Barosi, Luciano, Queiroz, Amilcar, Villela, Thyrso, Wang, Bin, Zhang, Jiajun, Marins, Alessandro, Costa, Andre, Ferreira, Elisa, Landim, Ricardo, dos Santos, Marcelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 671
creator de Mericia, Eduardo
Santos, Larissa
Wuensche, Carlos Alexandre
Liccardo, Vincenzo
Novaes, Camila
Delabrouille, Jacques
Remazeilles, Mathieu
Abdalla, Filipe
Feng, Chang
Barosi, Luciano
Queiroz, Amilcar
Villela, Thyrso
Wang, Bin
Zhang, Jiajun
Marins, Alessandro
Costa, Andre
Ferreira, Elisa
Landim, Ricardo
dos Santos, Marcelo
description Context. The 21 cm hydrogen line is arguably one of the most powerful probes with which to explore the Universe, from recombination to the present times. To recover it, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is designed to measure the 21 cm line and detect baryon acoustic oscillations (BAOs) using the intensity mapping (IM) technique. Aims. This work analyses the performance of the Generalized Needlet Internal Linear Combination ( GNILC ) method when combined with a power spectrum debiasing procedure. This method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It compares two different synchrotron emission models and different instrumental configurations and takes into account ancillary data in order to optimize both the removal of foreground emission and the recovery of the 21 cm signal across the full BINGO frequency band and to determine an optimal number of frequency (redshift) bands for the signal recovery. Methods. We produced foreground emission maps using the Planck Sky Model ( PSM ) and generated cosmological H I emission maps using the Full-Sky Log-normal Astro-Fields simulation Kit ( FLASK ) package. We also created thermal noise maps according to the instrumental setup. We apply the GNILC method to the simulated sky maps to separate the H I plus thermal noise contribution and, through a debiasing procedure, recover an estimate of the noiseless 21 cm power spectrum. Results. We find a near-optimal reconstruction of the H I signal using an 80-bin configuration, which resulted in a power-spectrum reconstruction average error over all frequencies of 3%. Furthermore, our tests show that GNILC is robust against different synchrotron emission models. Finally, adding an extra channel with C -Band All-Sky Survey (CBASS) foregrounds information, we reduced the estimation error of the 21 cm signal. Conclusions. The optimization of our previous work, producing a configuration with an optimal number of channels for binning the data, significantly impacts decisions regarding BINGO hardware configuration before commissioning. We were able to recover the H I signal with good efficiency in the harmonic space, but have yet to investigate the effect of 1/ f noise in the data, which will possibly impact the recovery of the H I signal. This i
doi_str_mv 10.1051/0004-6361/202243804
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04240046v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04240046v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04240046v13</originalsourceid><addsrcrecordid>eNqVjktrwkAUhYdSoWn1F7i52y6idx6mbq3UB4jduJUwJKNOmYfOTQr5941Quu_qcM75OBzGxhwnHGd8iogqL2TBpwKFUHKO6oFlXEmR49useGTZH_HEnom-eiv4XGbseDDU2HAG6kJ1SbFJMYCPtXEEOtRwSubWmlB1kAxF1za2722A9-1-_QmCQ-WBrG-dbkwNXl8JWrrvrffb3XLIBiftyIx-9YW9rj4Oy01-0a68Jut16sqobblZ7Mp7hkqo_mnxzeV_2B9bkk0k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>de Mericia, Eduardo ; Santos, Larissa ; Wuensche, Carlos Alexandre ; Liccardo, Vincenzo ; Novaes, Camila ; Delabrouille, Jacques ; Remazeilles, Mathieu ; Abdalla, Filipe ; Feng, Chang ; Barosi, Luciano ; Queiroz, Amilcar ; Villela, Thyrso ; Wang, Bin ; Zhang, Jiajun ; Marins, Alessandro ; Costa, Andre ; Ferreira, Elisa ; Landim, Ricardo ; dos Santos, Marcelo</creator><creatorcontrib>de Mericia, Eduardo ; Santos, Larissa ; Wuensche, Carlos Alexandre ; Liccardo, Vincenzo ; Novaes, Camila ; Delabrouille, Jacques ; Remazeilles, Mathieu ; Abdalla, Filipe ; Feng, Chang ; Barosi, Luciano ; Queiroz, Amilcar ; Villela, Thyrso ; Wang, Bin ; Zhang, Jiajun ; Marins, Alessandro ; Costa, Andre ; Ferreira, Elisa ; Landim, Ricardo ; dos Santos, Marcelo</creatorcontrib><description>Context. The 21 cm hydrogen line is arguably one of the most powerful probes with which to explore the Universe, from recombination to the present times. To recover it, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is designed to measure the 21 cm line and detect baryon acoustic oscillations (BAOs) using the intensity mapping (IM) technique. Aims. This work analyses the performance of the Generalized Needlet Internal Linear Combination ( GNILC ) method when combined with a power spectrum debiasing procedure. This method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It compares two different synchrotron emission models and different instrumental configurations and takes into account ancillary data in order to optimize both the removal of foreground emission and the recovery of the 21 cm signal across the full BINGO frequency band and to determine an optimal number of frequency (redshift) bands for the signal recovery. Methods. We produced foreground emission maps using the Planck Sky Model ( PSM ) and generated cosmological H I emission maps using the Full-Sky Log-normal Astro-Fields simulation Kit ( FLASK ) package. We also created thermal noise maps according to the instrumental setup. We apply the GNILC method to the simulated sky maps to separate the H I plus thermal noise contribution and, through a debiasing procedure, recover an estimate of the noiseless 21 cm power spectrum. Results. We find a near-optimal reconstruction of the H I signal using an 80-bin configuration, which resulted in a power-spectrum reconstruction average error over all frequencies of 3%. Furthermore, our tests show that GNILC is robust against different synchrotron emission models. Finally, adding an extra channel with C -Band All-Sky Survey (CBASS) foregrounds information, we reduced the estimation error of the 21 cm signal. Conclusions. The optimization of our previous work, producing a configuration with an optimal number of channels for binning the data, significantly impacts decisions regarding BINGO hardware configuration before commissioning. We were able to recover the H I signal with good efficiency in the harmonic space, but have yet to investigate the effect of 1/ f noise in the data, which will possibly impact the recovery of the H I signal. This issue will be addressed in forthcoming work.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202243804</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Physics</subject><ispartof>Astronomy and astrophysics (Berlin), 2023-03, Vol.671</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04240046$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Mericia, Eduardo</creatorcontrib><creatorcontrib>Santos, Larissa</creatorcontrib><creatorcontrib>Wuensche, Carlos Alexandre</creatorcontrib><creatorcontrib>Liccardo, Vincenzo</creatorcontrib><creatorcontrib>Novaes, Camila</creatorcontrib><creatorcontrib>Delabrouille, Jacques</creatorcontrib><creatorcontrib>Remazeilles, Mathieu</creatorcontrib><creatorcontrib>Abdalla, Filipe</creatorcontrib><creatorcontrib>Feng, Chang</creatorcontrib><creatorcontrib>Barosi, Luciano</creatorcontrib><creatorcontrib>Queiroz, Amilcar</creatorcontrib><creatorcontrib>Villela, Thyrso</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhang, Jiajun</creatorcontrib><creatorcontrib>Marins, Alessandro</creatorcontrib><creatorcontrib>Costa, Andre</creatorcontrib><creatorcontrib>Ferreira, Elisa</creatorcontrib><creatorcontrib>Landim, Ricardo</creatorcontrib><creatorcontrib>dos Santos, Marcelo</creatorcontrib><title>Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The 21 cm hydrogen line is arguably one of the most powerful probes with which to explore the Universe, from recombination to the present times. To recover it, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is designed to measure the 21 cm line and detect baryon acoustic oscillations (BAOs) using the intensity mapping (IM) technique. Aims. This work analyses the performance of the Generalized Needlet Internal Linear Combination ( GNILC ) method when combined with a power spectrum debiasing procedure. This method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It compares two different synchrotron emission models and different instrumental configurations and takes into account ancillary data in order to optimize both the removal of foreground emission and the recovery of the 21 cm signal across the full BINGO frequency band and to determine an optimal number of frequency (redshift) bands for the signal recovery. Methods. We produced foreground emission maps using the Planck Sky Model ( PSM ) and generated cosmological H I emission maps using the Full-Sky Log-normal Astro-Fields simulation Kit ( FLASK ) package. We also created thermal noise maps according to the instrumental setup. We apply the GNILC method to the simulated sky maps to separate the H I plus thermal noise contribution and, through a debiasing procedure, recover an estimate of the noiseless 21 cm power spectrum. Results. We find a near-optimal reconstruction of the H I signal using an 80-bin configuration, which resulted in a power-spectrum reconstruction average error over all frequencies of 3%. Furthermore, our tests show that GNILC is robust against different synchrotron emission models. Finally, adding an extra channel with C -Band All-Sky Survey (CBASS) foregrounds information, we reduced the estimation error of the 21 cm signal. Conclusions. The optimization of our previous work, producing a configuration with an optimal number of channels for binning the data, significantly impacts decisions regarding BINGO hardware configuration before commissioning. We were able to recover the H I signal with good efficiency in the harmonic space, but have yet to investigate the effect of 1/ f noise in the data, which will possibly impact the recovery of the H I signal. This issue will be addressed in forthcoming work.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVjktrwkAUhYdSoWn1F7i52y6idx6mbq3UB4jduJUwJKNOmYfOTQr5941Quu_qcM75OBzGxhwnHGd8iogqL2TBpwKFUHKO6oFlXEmR49useGTZH_HEnom-eiv4XGbseDDU2HAG6kJ1SbFJMYCPtXEEOtRwSubWmlB1kAxF1za2722A9-1-_QmCQ-WBrG-dbkwNXl8JWrrvrffb3XLIBiftyIx-9YW9rj4Oy01-0a68Jut16sqobblZ7Mp7hkqo_mnxzeV_2B9bkk0k</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>de Mericia, Eduardo</creator><creator>Santos, Larissa</creator><creator>Wuensche, Carlos Alexandre</creator><creator>Liccardo, Vincenzo</creator><creator>Novaes, Camila</creator><creator>Delabrouille, Jacques</creator><creator>Remazeilles, Mathieu</creator><creator>Abdalla, Filipe</creator><creator>Feng, Chang</creator><creator>Barosi, Luciano</creator><creator>Queiroz, Amilcar</creator><creator>Villela, Thyrso</creator><creator>Wang, Bin</creator><creator>Zhang, Jiajun</creator><creator>Marins, Alessandro</creator><creator>Costa, Andre</creator><creator>Ferreira, Elisa</creator><creator>Landim, Ricardo</creator><creator>dos Santos, Marcelo</creator><general>EDP Sciences</general><scope>1XC</scope></search><sort><creationdate>202303</creationdate><title>Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC</title><author>de Mericia, Eduardo ; Santos, Larissa ; Wuensche, Carlos Alexandre ; Liccardo, Vincenzo ; Novaes, Camila ; Delabrouille, Jacques ; Remazeilles, Mathieu ; Abdalla, Filipe ; Feng, Chang ; Barosi, Luciano ; Queiroz, Amilcar ; Villela, Thyrso ; Wang, Bin ; Zhang, Jiajun ; Marins, Alessandro ; Costa, Andre ; Ferreira, Elisa ; Landim, Ricardo ; dos Santos, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04240046v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Mericia, Eduardo</creatorcontrib><creatorcontrib>Santos, Larissa</creatorcontrib><creatorcontrib>Wuensche, Carlos Alexandre</creatorcontrib><creatorcontrib>Liccardo, Vincenzo</creatorcontrib><creatorcontrib>Novaes, Camila</creatorcontrib><creatorcontrib>Delabrouille, Jacques</creatorcontrib><creatorcontrib>Remazeilles, Mathieu</creatorcontrib><creatorcontrib>Abdalla, Filipe</creatorcontrib><creatorcontrib>Feng, Chang</creatorcontrib><creatorcontrib>Barosi, Luciano</creatorcontrib><creatorcontrib>Queiroz, Amilcar</creatorcontrib><creatorcontrib>Villela, Thyrso</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhang, Jiajun</creatorcontrib><creatorcontrib>Marins, Alessandro</creatorcontrib><creatorcontrib>Costa, Andre</creatorcontrib><creatorcontrib>Ferreira, Elisa</creatorcontrib><creatorcontrib>Landim, Ricardo</creatorcontrib><creatorcontrib>dos Santos, Marcelo</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Mericia, Eduardo</au><au>Santos, Larissa</au><au>Wuensche, Carlos Alexandre</au><au>Liccardo, Vincenzo</au><au>Novaes, Camila</au><au>Delabrouille, Jacques</au><au>Remazeilles, Mathieu</au><au>Abdalla, Filipe</au><au>Feng, Chang</au><au>Barosi, Luciano</au><au>Queiroz, Amilcar</au><au>Villela, Thyrso</au><au>Wang, Bin</au><au>Zhang, Jiajun</au><au>Marins, Alessandro</au><au>Costa, Andre</au><au>Ferreira, Elisa</au><au>Landim, Ricardo</au><au>dos Santos, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>671</volume><issn>0004-6361</issn><eissn>1432-0756</eissn><abstract>Context. The 21 cm hydrogen line is arguably one of the most powerful probes with which to explore the Universe, from recombination to the present times. To recover it, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The Baryon Acoustic Oscillations from Integrated Neutral Gas Observations (BINGO) radio telescope is designed to measure the 21 cm line and detect baryon acoustic oscillations (BAOs) using the intensity mapping (IM) technique. Aims. This work analyses the performance of the Generalized Needlet Internal Linear Combination ( GNILC ) method when combined with a power spectrum debiasing procedure. This method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It compares two different synchrotron emission models and different instrumental configurations and takes into account ancillary data in order to optimize both the removal of foreground emission and the recovery of the 21 cm signal across the full BINGO frequency band and to determine an optimal number of frequency (redshift) bands for the signal recovery. Methods. We produced foreground emission maps using the Planck Sky Model ( PSM ) and generated cosmological H I emission maps using the Full-Sky Log-normal Astro-Fields simulation Kit ( FLASK ) package. We also created thermal noise maps according to the instrumental setup. We apply the GNILC method to the simulated sky maps to separate the H I plus thermal noise contribution and, through a debiasing procedure, recover an estimate of the noiseless 21 cm power spectrum. Results. We find a near-optimal reconstruction of the H I signal using an 80-bin configuration, which resulted in a power-spectrum reconstruction average error over all frequencies of 3%. Furthermore, our tests show that GNILC is robust against different synchrotron emission models. Finally, adding an extra channel with C -Band All-Sky Survey (CBASS) foregrounds information, we reduced the estimation error of the 21 cm signal. Conclusions. The optimization of our previous work, producing a configuration with an optimal number of channels for binning the data, significantly impacts decisions regarding BINGO hardware configuration before commissioning. We were able to recover the H I signal with good efficiency in the harmonic space, but have yet to investigate the effect of 1/ f noise in the data, which will possibly impact the recovery of the H I signal. This issue will be addressed in forthcoming work.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202243804</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2023-03, Vol.671
issn 0004-6361
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_04240046v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Astrophysics
Physics
title Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20synchrotron%20models%20and%20frequency%20resolution%20in%20BINGO%2021%20cm%20simulated%20maps%20using%20GNILC&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=de%20Mericia,%20Eduardo&rft.date=2023-03&rft.volume=671&rft.issn=0004-6361&rft.eissn=1432-0756&rft_id=info:doi/10.1051/0004-6361/202243804&rft_dat=%3Chal%3Eoai_HAL_hal_04240046v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true