Decorated stable trees
We define decorated $α$-stable trees which are informally obtained from an $α$-stable tree by blowing up its branchpoints into random metric spaces. This generalizes the $α$-stable looptrees of Curien and Kortchemski, where those metric spaces are just deterministic circles. We provide different con...
Gespeichert in:
Veröffentlicht in: | Electronic journal of probability 2023-01, Vol.28 (none) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | none |
container_start_page | |
container_title | Electronic journal of probability |
container_volume | 28 |
creator | Sénizergues, Delphin Stefánsson, Sigurdur Örn Stufler, Benedikt |
description | We define decorated $α$-stable trees which are informally obtained from an $α$-stable tree by blowing up its branchpoints into random metric spaces. This generalizes the $α$-stable looptrees of Curien and Kortchemski, where those metric spaces are just deterministic circles. We provide different constructions for these objects, which allows us to understand some of their geometric properties, including compactness, Hausdorff dimension and self-similarity in distribution. We prove an invariance principle which states that under some conditions, analogous discrete objects, random decorated discrete trees, converge in the scaling limit to decorated $α$-stable trees. We mention a few examples where those objects appear in the context of random trees and planar maps, and we expect them to naturally arise in many more cases. |
doi_str_mv | 10.1214/23-EJP1050 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04229369v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04229369v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-c63c7be95680b1a34786195865eee18a6940352f2049ba8f59cc59ed94b015043</originalsourceid><addsrcrecordid>eNpNT01LAzEUDKJgrV48eO5VIfpevpp3LLVaZUEPeg5J-hYrKyvJIvjvbWkpnmYY5oMR4hLhFhWaO6Xl4vkVwcKRGCF4LZ3xdPyPn4qzWj8BFBjnR-LqnnNf4sCrSR1i6ngyFOZ6Lk7a2FW-2ONYvD8s3uZL2bw8Ps1njczKwSCz03mamKzzkDBqM_UOyXpnmRl9dGRAW9VuxihF31rK2RKvyCRAC0aPxfWu9yN24busv2L5DX1ch-WsCVsNjFKkHf3gxnuz8-bS11q4PQQQwvZ9UDrs3-s_XfhIxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decorated stable trees</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sénizergues, Delphin ; Stefánsson, Sigurdur Örn ; Stufler, Benedikt</creator><creatorcontrib>Sénizergues, Delphin ; Stefánsson, Sigurdur Örn ; Stufler, Benedikt</creatorcontrib><description>We define decorated $α$-stable trees which are informally obtained from an $α$-stable tree by blowing up its branchpoints into random metric spaces. This generalizes the $α$-stable looptrees of Curien and Kortchemski, where those metric spaces are just deterministic circles. We provide different constructions for these objects, which allows us to understand some of their geometric properties, including compactness, Hausdorff dimension and self-similarity in distribution. We prove an invariance principle which states that under some conditions, analogous discrete objects, random decorated discrete trees, converge in the scaling limit to decorated $α$-stable trees. We mention a few examples where those objects appear in the context of random trees and planar maps, and we expect them to naturally arise in many more cases.</description><identifier>ISSN: 1083-6489</identifier><identifier>EISSN: 1083-6489</identifier><identifier>DOI: 10.1214/23-EJP1050</identifier><language>eng</language><publisher>Institute of Mathematical Statistics (IMS)</publisher><subject>Mathematics ; Probability</subject><ispartof>Electronic journal of probability, 2023-01, Vol.28 (none)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-c63c7be95680b1a34786195865eee18a6940352f2049ba8f59cc59ed94b015043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04229369$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sénizergues, Delphin</creatorcontrib><creatorcontrib>Stefánsson, Sigurdur Örn</creatorcontrib><creatorcontrib>Stufler, Benedikt</creatorcontrib><title>Decorated stable trees</title><title>Electronic journal of probability</title><description>We define decorated $α$-stable trees which are informally obtained from an $α$-stable tree by blowing up its branchpoints into random metric spaces. This generalizes the $α$-stable looptrees of Curien and Kortchemski, where those metric spaces are just deterministic circles. We provide different constructions for these objects, which allows us to understand some of their geometric properties, including compactness, Hausdorff dimension and self-similarity in distribution. We prove an invariance principle which states that under some conditions, analogous discrete objects, random decorated discrete trees, converge in the scaling limit to decorated $α$-stable trees. We mention a few examples where those objects appear in the context of random trees and planar maps, and we expect them to naturally arise in many more cases.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1083-6489</issn><issn>1083-6489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNT01LAzEUDKJgrV48eO5VIfpevpp3LLVaZUEPeg5J-hYrKyvJIvjvbWkpnmYY5oMR4hLhFhWaO6Xl4vkVwcKRGCF4LZ3xdPyPn4qzWj8BFBjnR-LqnnNf4sCrSR1i6ngyFOZ6Lk7a2FW-2ONYvD8s3uZL2bw8Ps1njczKwSCz03mamKzzkDBqM_UOyXpnmRl9dGRAW9VuxihF31rK2RKvyCRAC0aPxfWu9yN24busv2L5DX1ch-WsCVsNjFKkHf3gxnuz8-bS11q4PQQQwvZ9UDrs3-s_XfhIxw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Sénizergues, Delphin</creator><creator>Stefánsson, Sigurdur Örn</creator><creator>Stufler, Benedikt</creator><general>Institute of Mathematical Statistics (IMS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20230101</creationdate><title>Decorated stable trees</title><author>Sénizergues, Delphin ; Stefánsson, Sigurdur Örn ; Stufler, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-c63c7be95680b1a34786195865eee18a6940352f2049ba8f59cc59ed94b015043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sénizergues, Delphin</creatorcontrib><creatorcontrib>Stefánsson, Sigurdur Örn</creatorcontrib><creatorcontrib>Stufler, Benedikt</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electronic journal of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sénizergues, Delphin</au><au>Stefánsson, Sigurdur Örn</au><au>Stufler, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorated stable trees</atitle><jtitle>Electronic journal of probability</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>28</volume><issue>none</issue><issn>1083-6489</issn><eissn>1083-6489</eissn><abstract>We define decorated $α$-stable trees which are informally obtained from an $α$-stable tree by blowing up its branchpoints into random metric spaces. This generalizes the $α$-stable looptrees of Curien and Kortchemski, where those metric spaces are just deterministic circles. We provide different constructions for these objects, which allows us to understand some of their geometric properties, including compactness, Hausdorff dimension and self-similarity in distribution. We prove an invariance principle which states that under some conditions, analogous discrete objects, random decorated discrete trees, converge in the scaling limit to decorated $α$-stable trees. We mention a few examples where those objects appear in the context of random trees and planar maps, and we expect them to naturally arise in many more cases.</abstract><pub>Institute of Mathematical Statistics (IMS)</pub><doi>10.1214/23-EJP1050</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-6489 |
ispartof | Electronic journal of probability, 2023-01, Vol.28 (none) |
issn | 1083-6489 1083-6489 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04229369v1 |
source | DOAJ Directory of Open Access Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Mathematics Probability |
title | Decorated stable trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorated%20stable%20trees&rft.jtitle=Electronic%20journal%20of%20probability&rft.au=S%C3%A9nizergues,%20Delphin&rft.date=2023-01-01&rft.volume=28&rft.issue=none&rft.issn=1083-6489&rft.eissn=1083-6489&rft_id=info:doi/10.1214/23-EJP1050&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04229369v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |