Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites

Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-08, Vol.119 (32), p.18074-18083
Hauptverfasser: Kabalan, Ihab, Khay, Ismail, Nouali, Habiba, Ryzhikov, Andrey, Lebeau, Benedict, Albrecht, Sebastien, Rigolet, Severinne, Fadlallah, Mohammad-B, Toufaily, Joumana, Hamieh, Taissir, Patarin, Joel, Daou, T. Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18083
container_issue 32
container_start_page 18074
container_title Journal of physical chemistry. C
container_volume 119
creator Kabalan, Ihab
Khay, Ismail
Nouali, Habiba
Ryzhikov, Andrey
Lebeau, Benedict
Albrecht, Sebastien
Rigolet, Severinne
Fadlallah, Mohammad-B
Toufaily, Joumana
Hamieh, Taissir
Patarin, Joel
Daou, T. Jean
description Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.
doi_str_mv 10.1021/acs.jpcc.5b04484
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04228987v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g45047312</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujiYjePe7VxMV-0u2REBQSjETx4qXpdqeyZNmSdjHBv95dINw8zeS995tkHkL3BA8IpuTJ2DhYb60diBxznvEL1COK0VRyIS7PO5fX6CbGNcaCYcJ66H1Wu2oHtYXEu6RZQbIwoSltBclH-Qsx8fVBndQQvqE1kgUE58PGtEjsmNfnWbrcbyH5Al-VDcRbdOVMFeHuNPvo83myHE_T-dvLbDyap4YR3qRWSeqwgJwxlmEjlXC5IEQVRtGhsUw64wosJaGGOVdIJbEcSgnE5ENcWMX66OF4d2UqvQ3lxoS99qbU09FcdxrmlGYqkz-kzeJj1gYfYwB3BgjWXX-67U93_elTfy3yeEQOjt-Fun3m__gfflNzCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</title><source>ACS Publications</source><creator>Kabalan, Ihab ; Khay, Ismail ; Nouali, Habiba ; Ryzhikov, Andrey ; Lebeau, Benedict ; Albrecht, Sebastien ; Rigolet, Severinne ; Fadlallah, Mohammad-B ; Toufaily, Joumana ; Hamieh, Taissir ; Patarin, Joel ; Daou, T. Jean</creator><creatorcontrib>Kabalan, Ihab ; Khay, Ismail ; Nouali, Habiba ; Ryzhikov, Andrey ; Lebeau, Benedict ; Albrecht, Sebastien ; Rigolet, Severinne ; Fadlallah, Mohammad-B ; Toufaily, Joumana ; Hamieh, Taissir ; Patarin, Joel ; Daou, T. Jean</creatorcontrib><description>Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b04484</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Organic chemistry</subject><ispartof>Journal of physical chemistry. C, 2015-08, Vol.119 (32), p.18074-18083</ispartof><rights>Copyright © American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</citedby><cites>FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</cites><orcidid>0000-0001-9253-9553 ; 0000-0002-1016-0193 ; 0000-0001-7447-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b04484$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b04484$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04228987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabalan, Ihab</creatorcontrib><creatorcontrib>Khay, Ismail</creatorcontrib><creatorcontrib>Nouali, Habiba</creatorcontrib><creatorcontrib>Ryzhikov, Andrey</creatorcontrib><creatorcontrib>Lebeau, Benedict</creatorcontrib><creatorcontrib>Albrecht, Sebastien</creatorcontrib><creatorcontrib>Rigolet, Severinne</creatorcontrib><creatorcontrib>Fadlallah, Mohammad-B</creatorcontrib><creatorcontrib>Toufaily, Joumana</creatorcontrib><creatorcontrib>Hamieh, Taissir</creatorcontrib><creatorcontrib>Patarin, Joel</creatorcontrib><creatorcontrib>Daou, T. Jean</creatorcontrib><title>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.</description><subject>Chemical Sciences</subject><subject>Organic chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujiYjePe7VxMV-0u2REBQSjETx4qXpdqeyZNmSdjHBv95dINw8zeS995tkHkL3BA8IpuTJ2DhYb60diBxznvEL1COK0VRyIS7PO5fX6CbGNcaCYcJ66H1Wu2oHtYXEu6RZQbIwoSltBclH-Qsx8fVBndQQvqE1kgUE58PGtEjsmNfnWbrcbyH5Al-VDcRbdOVMFeHuNPvo83myHE_T-dvLbDyap4YR3qRWSeqwgJwxlmEjlXC5IEQVRtGhsUw64wosJaGGOVdIJbEcSgnE5ENcWMX66OF4d2UqvQ3lxoS99qbU09FcdxrmlGYqkz-kzeJj1gYfYwB3BgjWXX-67U93_elTfy3yeEQOjt-Fun3m__gfflNzCA</recordid><startdate>20150813</startdate><enddate>20150813</enddate><creator>Kabalan, Ihab</creator><creator>Khay, Ismail</creator><creator>Nouali, Habiba</creator><creator>Ryzhikov, Andrey</creator><creator>Lebeau, Benedict</creator><creator>Albrecht, Sebastien</creator><creator>Rigolet, Severinne</creator><creator>Fadlallah, Mohammad-B</creator><creator>Toufaily, Joumana</creator><creator>Hamieh, Taissir</creator><creator>Patarin, Joel</creator><creator>Daou, T. Jean</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9253-9553</orcidid><orcidid>https://orcid.org/0000-0002-1016-0193</orcidid><orcidid>https://orcid.org/0000-0001-7447-6042</orcidid></search><sort><creationdate>20150813</creationdate><title>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</title><author>Kabalan, Ihab ; Khay, Ismail ; Nouali, Habiba ; Ryzhikov, Andrey ; Lebeau, Benedict ; Albrecht, Sebastien ; Rigolet, Severinne ; Fadlallah, Mohammad-B ; Toufaily, Joumana ; Hamieh, Taissir ; Patarin, Joel ; Daou, T. Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemical Sciences</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabalan, Ihab</creatorcontrib><creatorcontrib>Khay, Ismail</creatorcontrib><creatorcontrib>Nouali, Habiba</creatorcontrib><creatorcontrib>Ryzhikov, Andrey</creatorcontrib><creatorcontrib>Lebeau, Benedict</creatorcontrib><creatorcontrib>Albrecht, Sebastien</creatorcontrib><creatorcontrib>Rigolet, Severinne</creatorcontrib><creatorcontrib>Fadlallah, Mohammad-B</creatorcontrib><creatorcontrib>Toufaily, Joumana</creatorcontrib><creatorcontrib>Hamieh, Taissir</creatorcontrib><creatorcontrib>Patarin, Joel</creatorcontrib><creatorcontrib>Daou, T. Jean</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabalan, Ihab</au><au>Khay, Ismail</au><au>Nouali, Habiba</au><au>Ryzhikov, Andrey</au><au>Lebeau, Benedict</au><au>Albrecht, Sebastien</au><au>Rigolet, Severinne</au><au>Fadlallah, Mohammad-B</au><au>Toufaily, Joumana</au><au>Hamieh, Taissir</au><au>Patarin, Joel</au><au>Daou, T. Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-08-13</date><risdate>2015</risdate><volume>119</volume><issue>32</issue><spage>18074</spage><epage>18083</epage><pages>18074-18083</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b04484</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9253-9553</orcidid><orcidid>https://orcid.org/0000-0002-1016-0193</orcidid><orcidid>https://orcid.org/0000-0001-7447-6042</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-08, Vol.119 (32), p.18074-18083
issn 1932-7447
1932-7455
language eng
recordid cdi_hal_primary_oai_HAL_hal_04228987v1
source ACS Publications
subjects Chemical Sciences
Organic chemistry
title Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20Particle%20Sizes%20on%20the%20Energetic%20Performances%20of%20MFI-Type%20Zeolites&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kabalan,%20Ihab&rft.date=2015-08-13&rft.volume=119&rft.issue=32&rft.spage=18074&rft.epage=18083&rft.pages=18074-18083&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b04484&rft_dat=%3Cacs_hal_p%3Eg45047312%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true