Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites
Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-08, Vol.119 (32), p.18074-18083 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18083 |
---|---|
container_issue | 32 |
container_start_page | 18074 |
container_title | Journal of physical chemistry. C |
container_volume | 119 |
creator | Kabalan, Ihab Khay, Ismail Nouali, Habiba Ryzhikov, Andrey Lebeau, Benedict Albrecht, Sebastien Rigolet, Severinne Fadlallah, Mohammad-B Toufaily, Joumana Hamieh, Taissir Patarin, Joel Daou, T. Jean |
description | Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step. |
doi_str_mv | 10.1021/acs.jpcc.5b04484 |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04228987v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g45047312</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujiYjePe7VxMV-0u2REBQSjETx4qXpdqeyZNmSdjHBv95dINw8zeS995tkHkL3BA8IpuTJ2DhYb60diBxznvEL1COK0VRyIS7PO5fX6CbGNcaCYcJ66H1Wu2oHtYXEu6RZQbIwoSltBclH-Qsx8fVBndQQvqE1kgUE58PGtEjsmNfnWbrcbyH5Al-VDcRbdOVMFeHuNPvo83myHE_T-dvLbDyap4YR3qRWSeqwgJwxlmEjlXC5IEQVRtGhsUw64wosJaGGOVdIJbEcSgnE5ENcWMX66OF4d2UqvQ3lxoS99qbU09FcdxrmlGYqkz-kzeJj1gYfYwB3BgjWXX-67U93_elTfy3yeEQOjt-Fun3m__gfflNzCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</title><source>ACS Publications</source><creator>Kabalan, Ihab ; Khay, Ismail ; Nouali, Habiba ; Ryzhikov, Andrey ; Lebeau, Benedict ; Albrecht, Sebastien ; Rigolet, Severinne ; Fadlallah, Mohammad-B ; Toufaily, Joumana ; Hamieh, Taissir ; Patarin, Joel ; Daou, T. Jean</creator><creatorcontrib>Kabalan, Ihab ; Khay, Ismail ; Nouali, Habiba ; Ryzhikov, Andrey ; Lebeau, Benedict ; Albrecht, Sebastien ; Rigolet, Severinne ; Fadlallah, Mohammad-B ; Toufaily, Joumana ; Hamieh, Taissir ; Patarin, Joel ; Daou, T. Jean</creatorcontrib><description>Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b04484</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Organic chemistry</subject><ispartof>Journal of physical chemistry. C, 2015-08, Vol.119 (32), p.18074-18083</ispartof><rights>Copyright © American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</citedby><cites>FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</cites><orcidid>0000-0001-9253-9553 ; 0000-0002-1016-0193 ; 0000-0001-7447-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b04484$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b04484$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04228987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabalan, Ihab</creatorcontrib><creatorcontrib>Khay, Ismail</creatorcontrib><creatorcontrib>Nouali, Habiba</creatorcontrib><creatorcontrib>Ryzhikov, Andrey</creatorcontrib><creatorcontrib>Lebeau, Benedict</creatorcontrib><creatorcontrib>Albrecht, Sebastien</creatorcontrib><creatorcontrib>Rigolet, Severinne</creatorcontrib><creatorcontrib>Fadlallah, Mohammad-B</creatorcontrib><creatorcontrib>Toufaily, Joumana</creatorcontrib><creatorcontrib>Hamieh, Taissir</creatorcontrib><creatorcontrib>Patarin, Joel</creatorcontrib><creatorcontrib>Daou, T. Jean</creatorcontrib><title>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.</description><subject>Chemical Sciences</subject><subject>Organic chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujiYjePe7VxMV-0u2REBQSjETx4qXpdqeyZNmSdjHBv95dINw8zeS995tkHkL3BA8IpuTJ2DhYb60diBxznvEL1COK0VRyIS7PO5fX6CbGNcaCYcJ66H1Wu2oHtYXEu6RZQbIwoSltBclH-Qsx8fVBndQQvqE1kgUE58PGtEjsmNfnWbrcbyH5Al-VDcRbdOVMFeHuNPvo83myHE_T-dvLbDyap4YR3qRWSeqwgJwxlmEjlXC5IEQVRtGhsUw64wosJaGGOVdIJbEcSgnE5ENcWMX66OF4d2UqvQ3lxoS99qbU09FcdxrmlGYqkz-kzeJj1gYfYwB3BgjWXX-67U93_elTfy3yeEQOjt-Fun3m__gfflNzCA</recordid><startdate>20150813</startdate><enddate>20150813</enddate><creator>Kabalan, Ihab</creator><creator>Khay, Ismail</creator><creator>Nouali, Habiba</creator><creator>Ryzhikov, Andrey</creator><creator>Lebeau, Benedict</creator><creator>Albrecht, Sebastien</creator><creator>Rigolet, Severinne</creator><creator>Fadlallah, Mohammad-B</creator><creator>Toufaily, Joumana</creator><creator>Hamieh, Taissir</creator><creator>Patarin, Joel</creator><creator>Daou, T. Jean</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9253-9553</orcidid><orcidid>https://orcid.org/0000-0002-1016-0193</orcidid><orcidid>https://orcid.org/0000-0001-7447-6042</orcidid></search><sort><creationdate>20150813</creationdate><title>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</title><author>Kabalan, Ihab ; Khay, Ismail ; Nouali, Habiba ; Ryzhikov, Andrey ; Lebeau, Benedict ; Albrecht, Sebastien ; Rigolet, Severinne ; Fadlallah, Mohammad-B ; Toufaily, Joumana ; Hamieh, Taissir ; Patarin, Joel ; Daou, T. Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-c972f05eb33380a795fb5119da926ac37fafd07712a3ffd79707677e1ab60dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemical Sciences</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabalan, Ihab</creatorcontrib><creatorcontrib>Khay, Ismail</creatorcontrib><creatorcontrib>Nouali, Habiba</creatorcontrib><creatorcontrib>Ryzhikov, Andrey</creatorcontrib><creatorcontrib>Lebeau, Benedict</creatorcontrib><creatorcontrib>Albrecht, Sebastien</creatorcontrib><creatorcontrib>Rigolet, Severinne</creatorcontrib><creatorcontrib>Fadlallah, Mohammad-B</creatorcontrib><creatorcontrib>Toufaily, Joumana</creatorcontrib><creatorcontrib>Hamieh, Taissir</creatorcontrib><creatorcontrib>Patarin, Joel</creatorcontrib><creatorcontrib>Daou, T. Jean</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabalan, Ihab</au><au>Khay, Ismail</au><au>Nouali, Habiba</au><au>Ryzhikov, Andrey</au><au>Lebeau, Benedict</au><au>Albrecht, Sebastien</au><au>Rigolet, Severinne</au><au>Fadlallah, Mohammad-B</au><au>Toufaily, Joumana</au><au>Hamieh, Taissir</au><au>Patarin, Joel</au><au>Daou, T. Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-08-13</date><risdate>2015</risdate><volume>119</volume><issue>32</issue><spage>18074</spage><epage>18083</epage><pages>18074-18083</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoporous materials have an important role in addressing some of the major energy and environmental-related problems facing society. Herein, four MFI-type zeosils with crystallite size ranging from nanometer to micrometer were synthesized (nanosheets, nanocrystals, honeycombs, and big crystals) in order to establish a relation between the crystal size of these zeosils and their energetic performances under high-pressure intrusion–extrusion experiments (mechanical energy storage). The intrusion–extrusion behavior of water and concentrated LiCl aqueous solution (20 M) in these four zeosils was evaluated at room temperature. Whatever the crystal size, the “Silicalite-1-water” systems displayed a spring behavior, whereas “Silicalite-1-LiCl aqueous solution” systems moved slightly toward a shock-absorber behavior with an increase in the intrusion and extrusion pressures (273–285 MPa) compared to “Silicalite-1-water” systems (88–96 MPa). Therefore, in the case of the LiCl aqueous solution (20 M), the energetic performance was tripled. Compared to the big crystal sample, both the honeycomb and the nanocrystal samples showed a slight decrease of the intrusion and extrusion pressures. A decrease of the intrusion and extrusion volumes was observed in the case of nanocrystal sample compared to both big crystal and honeycomb samples, which is attributed to the noncrystallized silica regions infused within the nanocrystals. Contrary to these three samples, liquid intrusion occurred at atmospheric pressure for the nanosheet sample, which is likely due to both the presence of a high number of surface defects and the low thickness of the zeolite nanosheets (2 nm). Solid-state NMR spectroscopy and thermogravimetric analyses provided evidence on the presence of local defects on the nonintruded samples and the breaking of some siloxane bridges after the intrusion–extrusion step.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b04484</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9253-9553</orcidid><orcidid>https://orcid.org/0000-0002-1016-0193</orcidid><orcidid>https://orcid.org/0000-0001-7447-6042</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2015-08, Vol.119 (32), p.18074-18083 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04228987v1 |
source | ACS Publications |
subjects | Chemical Sciences Organic chemistry |
title | Influence of the Particle Sizes on the Energetic Performances of MFI-Type Zeolites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20Particle%20Sizes%20on%20the%20Energetic%20Performances%20of%20MFI-Type%20Zeolites&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kabalan,%20Ihab&rft.date=2015-08-13&rft.volume=119&rft.issue=32&rft.spage=18074&rft.epage=18083&rft.pages=18074-18083&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b04484&rft_dat=%3Cacs_hal_p%3Eg45047312%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |