Weak neuronal glycolysis sustains cognition and organismal fitness

The energy cost of neuronal activity is mainly sustained by glucose 1 , 2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3 – 6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2024-07, Vol.6 (7), p.1253-1267
Hauptverfasser: Jimenez-Blasco, Daniel, Agulla, Jesús, Lapresa, Rebeca, Garcia-Macia, Marina, Bobo-Jimenez, Veronica, Garcia-Rodriguez, Dario, Manjarres-Raza, Israel, Fernandez, Emilio, Jeanson, Yannick, Khoury, Spiro, Portais, Jean-Charles, Padro, Daniel, Ramos-Cabrer, Pedro, Carmeliet, Peter, Almeida, Angeles, Bolaños, Juan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1267
container_issue 7
container_start_page 1253
container_title Nature metabolism
container_volume 6
creator Jimenez-Blasco, Daniel
Agulla, Jesús
Lapresa, Rebeca
Garcia-Macia, Marina
Bobo-Jimenez, Veronica
Garcia-Rodriguez, Dario
Manjarres-Raza, Israel
Fernandez, Emilio
Jeanson, Yannick
Khoury, Spiro
Portais, Jean-Charles
Padro, Daniel
Ramos-Cabrer, Pedro
Carmeliet, Peter
Almeida, Angeles
Bolaños, Juan P.
description The energy cost of neuronal activity is mainly sustained by glucose 1 , 2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3 – 6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3) 3 , 7 , 8 , a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD + ) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD + restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions. Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.
doi_str_mv 10.1038/s42255-024-01049-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04224688v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060382068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhi3UChDwAhxQjvQQOnYcr32kCEqllXqh4mg5zmQxzdrgSZD27TENRT31NKOZ7_8PH2OnHC44NPorSSHatgYha-AgTQ177FC0QtSt5uLTP_sBOyF6BADBueTC7LODRq-0WRl9yL7do_tdRZxzim6sNuPOp3FHgSqaaXIhUuXTJoYppFi52Fcpb1wMtC3wEKaIRMfs8-BGwpP3ecR-3VzfXd3W65_ff1xdrmvftO1US-Wc4xxar3inOeh-GDrphO8Ru77XWkjsVs3gEZUxnZDKKwOoBoOuc9w0R-zL0vvgRvuUw9blnU0u2NvLtX27QVEildYvvLDnC_uU0_OMNNltII_j6CKmmWwDqkgUoHRBxYL6nIgyDh_dHOybaruotkW1_aPaQgmdvffP3Rb7j8hfsQVoFoDKK24w28c056KY_lf7Cgm7ico</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060382068</pqid></control><display><type>article</type><title>Weak neuronal glycolysis sustains cognition and organismal fitness</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jimenez-Blasco, Daniel ; Agulla, Jesús ; Lapresa, Rebeca ; Garcia-Macia, Marina ; Bobo-Jimenez, Veronica ; Garcia-Rodriguez, Dario ; Manjarres-Raza, Israel ; Fernandez, Emilio ; Jeanson, Yannick ; Khoury, Spiro ; Portais, Jean-Charles ; Padro, Daniel ; Ramos-Cabrer, Pedro ; Carmeliet, Peter ; Almeida, Angeles ; Bolaños, Juan P.</creator><creatorcontrib>Jimenez-Blasco, Daniel ; Agulla, Jesús ; Lapresa, Rebeca ; Garcia-Macia, Marina ; Bobo-Jimenez, Veronica ; Garcia-Rodriguez, Dario ; Manjarres-Raza, Israel ; Fernandez, Emilio ; Jeanson, Yannick ; Khoury, Spiro ; Portais, Jean-Charles ; Padro, Daniel ; Ramos-Cabrer, Pedro ; Carmeliet, Peter ; Almeida, Angeles ; Bolaños, Juan P.</creatorcontrib><description>The energy cost of neuronal activity is mainly sustained by glucose 1 , 2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3 – 6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3) 3 , 7 , 8 , a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD + ) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD + restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions. Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-024-01049-0</identifier><identifier>PMID: 38789798</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 38/44 ; 38/47 ; 631/378/340 ; 631/45/882 ; 64/60 ; 96/95 ; Biomedical and Life Sciences ; Letter ; Life Sciences</subject><ispartof>Nature metabolism, 2024-07, Vol.6 (7), p.1253-1267</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</citedby><cites>FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</cites><orcidid>0000-0001-8901-3972 ; 0000-0001-7961-1821 ; 0000-0001-5325-3130 ; 0000-0003-0365-7406 ; 0000-0002-3908-9060 ; 0000-0001-6314-9839 ; 0000-0001-5416-130X ; 0000-0002-1384-1832 ; 0000-0001-9574-2549 ; 0000-0003-0368-7031 ; 0000-0003-0485-8904 ; 0000-0002-3949-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-024-01049-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-024-01049-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38789798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04224688$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Blasco, Daniel</creatorcontrib><creatorcontrib>Agulla, Jesús</creatorcontrib><creatorcontrib>Lapresa, Rebeca</creatorcontrib><creatorcontrib>Garcia-Macia, Marina</creatorcontrib><creatorcontrib>Bobo-Jimenez, Veronica</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Dario</creatorcontrib><creatorcontrib>Manjarres-Raza, Israel</creatorcontrib><creatorcontrib>Fernandez, Emilio</creatorcontrib><creatorcontrib>Jeanson, Yannick</creatorcontrib><creatorcontrib>Khoury, Spiro</creatorcontrib><creatorcontrib>Portais, Jean-Charles</creatorcontrib><creatorcontrib>Padro, Daniel</creatorcontrib><creatorcontrib>Ramos-Cabrer, Pedro</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Almeida, Angeles</creatorcontrib><creatorcontrib>Bolaños, Juan P.</creatorcontrib><title>Weak neuronal glycolysis sustains cognition and organismal fitness</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>The energy cost of neuronal activity is mainly sustained by glucose 1 , 2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3 – 6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3) 3 , 7 , 8 , a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD + ) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD + restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions. Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.</description><subject>13/31</subject><subject>38/44</subject><subject>38/47</subject><subject>631/378/340</subject><subject>631/45/882</subject><subject>64/60</subject><subject>96/95</subject><subject>Biomedical and Life Sciences</subject><subject>Letter</subject><subject>Life Sciences</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFO3DAQhi3UChDwAhxQjvQQOnYcr32kCEqllXqh4mg5zmQxzdrgSZD27TENRT31NKOZ7_8PH2OnHC44NPorSSHatgYha-AgTQ177FC0QtSt5uLTP_sBOyF6BADBueTC7LODRq-0WRl9yL7do_tdRZxzim6sNuPOp3FHgSqaaXIhUuXTJoYppFi52Fcpb1wMtC3wEKaIRMfs8-BGwpP3ecR-3VzfXd3W65_ff1xdrmvftO1US-Wc4xxar3inOeh-GDrphO8Ru77XWkjsVs3gEZUxnZDKKwOoBoOuc9w0R-zL0vvgRvuUw9blnU0u2NvLtX27QVEildYvvLDnC_uU0_OMNNltII_j6CKmmWwDqkgUoHRBxYL6nIgyDh_dHOybaruotkW1_aPaQgmdvffP3Rb7j8hfsQVoFoDKK24w28c056KY_lf7Cgm7ico</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jimenez-Blasco, Daniel</creator><creator>Agulla, Jesús</creator><creator>Lapresa, Rebeca</creator><creator>Garcia-Macia, Marina</creator><creator>Bobo-Jimenez, Veronica</creator><creator>Garcia-Rodriguez, Dario</creator><creator>Manjarres-Raza, Israel</creator><creator>Fernandez, Emilio</creator><creator>Jeanson, Yannick</creator><creator>Khoury, Spiro</creator><creator>Portais, Jean-Charles</creator><creator>Padro, Daniel</creator><creator>Ramos-Cabrer, Pedro</creator><creator>Carmeliet, Peter</creator><creator>Almeida, Angeles</creator><creator>Bolaños, Juan P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8901-3972</orcidid><orcidid>https://orcid.org/0000-0001-7961-1821</orcidid><orcidid>https://orcid.org/0000-0001-5325-3130</orcidid><orcidid>https://orcid.org/0000-0003-0365-7406</orcidid><orcidid>https://orcid.org/0000-0002-3908-9060</orcidid><orcidid>https://orcid.org/0000-0001-6314-9839</orcidid><orcidid>https://orcid.org/0000-0001-5416-130X</orcidid><orcidid>https://orcid.org/0000-0002-1384-1832</orcidid><orcidid>https://orcid.org/0000-0001-9574-2549</orcidid><orcidid>https://orcid.org/0000-0003-0368-7031</orcidid><orcidid>https://orcid.org/0000-0003-0485-8904</orcidid><orcidid>https://orcid.org/0000-0002-3949-6862</orcidid></search><sort><creationdate>20240701</creationdate><title>Weak neuronal glycolysis sustains cognition and organismal fitness</title><author>Jimenez-Blasco, Daniel ; Agulla, Jesús ; Lapresa, Rebeca ; Garcia-Macia, Marina ; Bobo-Jimenez, Veronica ; Garcia-Rodriguez, Dario ; Manjarres-Raza, Israel ; Fernandez, Emilio ; Jeanson, Yannick ; Khoury, Spiro ; Portais, Jean-Charles ; Padro, Daniel ; Ramos-Cabrer, Pedro ; Carmeliet, Peter ; Almeida, Angeles ; Bolaños, Juan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/31</topic><topic>38/44</topic><topic>38/47</topic><topic>631/378/340</topic><topic>631/45/882</topic><topic>64/60</topic><topic>96/95</topic><topic>Biomedical and Life Sciences</topic><topic>Letter</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Blasco, Daniel</creatorcontrib><creatorcontrib>Agulla, Jesús</creatorcontrib><creatorcontrib>Lapresa, Rebeca</creatorcontrib><creatorcontrib>Garcia-Macia, Marina</creatorcontrib><creatorcontrib>Bobo-Jimenez, Veronica</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Dario</creatorcontrib><creatorcontrib>Manjarres-Raza, Israel</creatorcontrib><creatorcontrib>Fernandez, Emilio</creatorcontrib><creatorcontrib>Jeanson, Yannick</creatorcontrib><creatorcontrib>Khoury, Spiro</creatorcontrib><creatorcontrib>Portais, Jean-Charles</creatorcontrib><creatorcontrib>Padro, Daniel</creatorcontrib><creatorcontrib>Ramos-Cabrer, Pedro</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Almeida, Angeles</creatorcontrib><creatorcontrib>Bolaños, Juan P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Blasco, Daniel</au><au>Agulla, Jesús</au><au>Lapresa, Rebeca</au><au>Garcia-Macia, Marina</au><au>Bobo-Jimenez, Veronica</au><au>Garcia-Rodriguez, Dario</au><au>Manjarres-Raza, Israel</au><au>Fernandez, Emilio</au><au>Jeanson, Yannick</au><au>Khoury, Spiro</au><au>Portais, Jean-Charles</au><au>Padro, Daniel</au><au>Ramos-Cabrer, Pedro</au><au>Carmeliet, Peter</au><au>Almeida, Angeles</au><au>Bolaños, Juan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak neuronal glycolysis sustains cognition and organismal fitness</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>6</volume><issue>7</issue><spage>1253</spage><epage>1267</epage><pages>1253-1267</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>The energy cost of neuronal activity is mainly sustained by glucose 1 , 2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3 – 6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3) 3 , 7 , 8 , a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD + ) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD + restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions. Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38789798</pmid><doi>10.1038/s42255-024-01049-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8901-3972</orcidid><orcidid>https://orcid.org/0000-0001-7961-1821</orcidid><orcidid>https://orcid.org/0000-0001-5325-3130</orcidid><orcidid>https://orcid.org/0000-0003-0365-7406</orcidid><orcidid>https://orcid.org/0000-0002-3908-9060</orcidid><orcidid>https://orcid.org/0000-0001-6314-9839</orcidid><orcidid>https://orcid.org/0000-0001-5416-130X</orcidid><orcidid>https://orcid.org/0000-0002-1384-1832</orcidid><orcidid>https://orcid.org/0000-0001-9574-2549</orcidid><orcidid>https://orcid.org/0000-0003-0368-7031</orcidid><orcidid>https://orcid.org/0000-0003-0485-8904</orcidid><orcidid>https://orcid.org/0000-0002-3949-6862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5812
ispartof Nature metabolism, 2024-07, Vol.6 (7), p.1253-1267
issn 2522-5812
2522-5812
language eng
recordid cdi_hal_primary_oai_HAL_hal_04224688v1
source SpringerLink Journals; Nature Journals Online
subjects 13/31
38/44
38/47
631/378/340
631/45/882
64/60
96/95
Biomedical and Life Sciences
Letter
Life Sciences
title Weak neuronal glycolysis sustains cognition and organismal fitness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20neuronal%20glycolysis%20sustains%20cognition%20and%20organismal%20fitness&rft.jtitle=Nature%20metabolism&rft.au=Jimenez-Blasco,%20Daniel&rft.date=2024-07-01&rft.volume=6&rft.issue=7&rft.spage=1253&rft.epage=1267&rft.pages=1253-1267&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-024-01049-0&rft_dat=%3Cproquest_hal_p%3E3060382068%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060382068&rft_id=info:pmid/38789798&rfr_iscdi=true