Weak neuronal glycolysis sustains cognition and organismal fitness
The energy cost of neuronal activity is mainly sustained by glucose 1 , 2 . However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis 3 – 6 , a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (...
Gespeichert in:
Veröffentlicht in: | Nature metabolism 2024-07, Vol.6 (7), p.1253-1267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1267 |
---|---|
container_issue | 7 |
container_start_page | 1253 |
container_title | Nature metabolism |
container_volume | 6 |
creator | Jimenez-Blasco, Daniel Agulla, Jesús Lapresa, Rebeca Garcia-Macia, Marina Bobo-Jimenez, Veronica Garcia-Rodriguez, Dario Manjarres-Raza, Israel Fernandez, Emilio Jeanson, Yannick Khoury, Spiro Portais, Jean-Charles Padro, Daniel Ramos-Cabrer, Pedro Carmeliet, Peter Almeida, Angeles Bolaños, Juan P. |
description | The energy cost of neuronal activity is mainly sustained by glucose
1
,
2
. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis
3
–
6
, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3)
3
,
7
,
8
, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through
Pfkfb3
expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD
+
) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining
Pfkfb3
expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD
+
restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.
Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance. |
doi_str_mv | 10.1038/s42255-024-01049-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04224688v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060382068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhi3UChDwAhxQjvQQOnYcr32kCEqllXqh4mg5zmQxzdrgSZD27TENRT31NKOZ7_8PH2OnHC44NPorSSHatgYha-AgTQ177FC0QtSt5uLTP_sBOyF6BADBueTC7LODRq-0WRl9yL7do_tdRZxzim6sNuPOp3FHgSqaaXIhUuXTJoYppFi52Fcpb1wMtC3wEKaIRMfs8-BGwpP3ecR-3VzfXd3W65_ff1xdrmvftO1US-Wc4xxar3inOeh-GDrphO8Ru77XWkjsVs3gEZUxnZDKKwOoBoOuc9w0R-zL0vvgRvuUw9blnU0u2NvLtX27QVEildYvvLDnC_uU0_OMNNltII_j6CKmmWwDqkgUoHRBxYL6nIgyDh_dHOybaruotkW1_aPaQgmdvffP3Rb7j8hfsQVoFoDKK24w28c056KY_lf7Cgm7ico</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060382068</pqid></control><display><type>article</type><title>Weak neuronal glycolysis sustains cognition and organismal fitness</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Jimenez-Blasco, Daniel ; Agulla, Jesús ; Lapresa, Rebeca ; Garcia-Macia, Marina ; Bobo-Jimenez, Veronica ; Garcia-Rodriguez, Dario ; Manjarres-Raza, Israel ; Fernandez, Emilio ; Jeanson, Yannick ; Khoury, Spiro ; Portais, Jean-Charles ; Padro, Daniel ; Ramos-Cabrer, Pedro ; Carmeliet, Peter ; Almeida, Angeles ; Bolaños, Juan P.</creator><creatorcontrib>Jimenez-Blasco, Daniel ; Agulla, Jesús ; Lapresa, Rebeca ; Garcia-Macia, Marina ; Bobo-Jimenez, Veronica ; Garcia-Rodriguez, Dario ; Manjarres-Raza, Israel ; Fernandez, Emilio ; Jeanson, Yannick ; Khoury, Spiro ; Portais, Jean-Charles ; Padro, Daniel ; Ramos-Cabrer, Pedro ; Carmeliet, Peter ; Almeida, Angeles ; Bolaños, Juan P.</creatorcontrib><description>The energy cost of neuronal activity is mainly sustained by glucose
1
,
2
. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis
3
–
6
, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3)
3
,
7
,
8
, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through
Pfkfb3
expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD
+
) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining
Pfkfb3
expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD
+
restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.
Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-024-01049-0</identifier><identifier>PMID: 38789798</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 38/44 ; 38/47 ; 631/378/340 ; 631/45/882 ; 64/60 ; 96/95 ; Biomedical and Life Sciences ; Letter ; Life Sciences</subject><ispartof>Nature metabolism, 2024-07, Vol.6 (7), p.1253-1267</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</citedby><cites>FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</cites><orcidid>0000-0001-8901-3972 ; 0000-0001-7961-1821 ; 0000-0001-5325-3130 ; 0000-0003-0365-7406 ; 0000-0002-3908-9060 ; 0000-0001-6314-9839 ; 0000-0001-5416-130X ; 0000-0002-1384-1832 ; 0000-0001-9574-2549 ; 0000-0003-0368-7031 ; 0000-0003-0485-8904 ; 0000-0002-3949-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-024-01049-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-024-01049-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38789798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04224688$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Blasco, Daniel</creatorcontrib><creatorcontrib>Agulla, Jesús</creatorcontrib><creatorcontrib>Lapresa, Rebeca</creatorcontrib><creatorcontrib>Garcia-Macia, Marina</creatorcontrib><creatorcontrib>Bobo-Jimenez, Veronica</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Dario</creatorcontrib><creatorcontrib>Manjarres-Raza, Israel</creatorcontrib><creatorcontrib>Fernandez, Emilio</creatorcontrib><creatorcontrib>Jeanson, Yannick</creatorcontrib><creatorcontrib>Khoury, Spiro</creatorcontrib><creatorcontrib>Portais, Jean-Charles</creatorcontrib><creatorcontrib>Padro, Daniel</creatorcontrib><creatorcontrib>Ramos-Cabrer, Pedro</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Almeida, Angeles</creatorcontrib><creatorcontrib>Bolaños, Juan P.</creatorcontrib><title>Weak neuronal glycolysis sustains cognition and organismal fitness</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>The energy cost of neuronal activity is mainly sustained by glucose
1
,
2
. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis
3
–
6
, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3)
3
,
7
,
8
, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through
Pfkfb3
expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD
+
) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining
Pfkfb3
expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD
+
restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.
Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.</description><subject>13/31</subject><subject>38/44</subject><subject>38/47</subject><subject>631/378/340</subject><subject>631/45/882</subject><subject>64/60</subject><subject>96/95</subject><subject>Biomedical and Life Sciences</subject><subject>Letter</subject><subject>Life Sciences</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFO3DAQhi3UChDwAhxQjvQQOnYcr32kCEqllXqh4mg5zmQxzdrgSZD27TENRT31NKOZ7_8PH2OnHC44NPorSSHatgYha-AgTQ177FC0QtSt5uLTP_sBOyF6BADBueTC7LODRq-0WRl9yL7do_tdRZxzim6sNuPOp3FHgSqaaXIhUuXTJoYppFi52Fcpb1wMtC3wEKaIRMfs8-BGwpP3ecR-3VzfXd3W65_ff1xdrmvftO1US-Wc4xxar3inOeh-GDrphO8Ru77XWkjsVs3gEZUxnZDKKwOoBoOuc9w0R-zL0vvgRvuUw9blnU0u2NvLtX27QVEildYvvLDnC_uU0_OMNNltII_j6CKmmWwDqkgUoHRBxYL6nIgyDh_dHOybaruotkW1_aPaQgmdvffP3Rb7j8hfsQVoFoDKK24w28c056KY_lf7Cgm7ico</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jimenez-Blasco, Daniel</creator><creator>Agulla, Jesús</creator><creator>Lapresa, Rebeca</creator><creator>Garcia-Macia, Marina</creator><creator>Bobo-Jimenez, Veronica</creator><creator>Garcia-Rodriguez, Dario</creator><creator>Manjarres-Raza, Israel</creator><creator>Fernandez, Emilio</creator><creator>Jeanson, Yannick</creator><creator>Khoury, Spiro</creator><creator>Portais, Jean-Charles</creator><creator>Padro, Daniel</creator><creator>Ramos-Cabrer, Pedro</creator><creator>Carmeliet, Peter</creator><creator>Almeida, Angeles</creator><creator>Bolaños, Juan P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8901-3972</orcidid><orcidid>https://orcid.org/0000-0001-7961-1821</orcidid><orcidid>https://orcid.org/0000-0001-5325-3130</orcidid><orcidid>https://orcid.org/0000-0003-0365-7406</orcidid><orcidid>https://orcid.org/0000-0002-3908-9060</orcidid><orcidid>https://orcid.org/0000-0001-6314-9839</orcidid><orcidid>https://orcid.org/0000-0001-5416-130X</orcidid><orcidid>https://orcid.org/0000-0002-1384-1832</orcidid><orcidid>https://orcid.org/0000-0001-9574-2549</orcidid><orcidid>https://orcid.org/0000-0003-0368-7031</orcidid><orcidid>https://orcid.org/0000-0003-0485-8904</orcidid><orcidid>https://orcid.org/0000-0002-3949-6862</orcidid></search><sort><creationdate>20240701</creationdate><title>Weak neuronal glycolysis sustains cognition and organismal fitness</title><author>Jimenez-Blasco, Daniel ; Agulla, Jesús ; Lapresa, Rebeca ; Garcia-Macia, Marina ; Bobo-Jimenez, Veronica ; Garcia-Rodriguez, Dario ; Manjarres-Raza, Israel ; Fernandez, Emilio ; Jeanson, Yannick ; Khoury, Spiro ; Portais, Jean-Charles ; Padro, Daniel ; Ramos-Cabrer, Pedro ; Carmeliet, Peter ; Almeida, Angeles ; Bolaños, Juan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-46aaa1105c61b8108dffb4a2cdeebdd8824eb73fcee699b246c690e6f9eaba193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/31</topic><topic>38/44</topic><topic>38/47</topic><topic>631/378/340</topic><topic>631/45/882</topic><topic>64/60</topic><topic>96/95</topic><topic>Biomedical and Life Sciences</topic><topic>Letter</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Blasco, Daniel</creatorcontrib><creatorcontrib>Agulla, Jesús</creatorcontrib><creatorcontrib>Lapresa, Rebeca</creatorcontrib><creatorcontrib>Garcia-Macia, Marina</creatorcontrib><creatorcontrib>Bobo-Jimenez, Veronica</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Dario</creatorcontrib><creatorcontrib>Manjarres-Raza, Israel</creatorcontrib><creatorcontrib>Fernandez, Emilio</creatorcontrib><creatorcontrib>Jeanson, Yannick</creatorcontrib><creatorcontrib>Khoury, Spiro</creatorcontrib><creatorcontrib>Portais, Jean-Charles</creatorcontrib><creatorcontrib>Padro, Daniel</creatorcontrib><creatorcontrib>Ramos-Cabrer, Pedro</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Almeida, Angeles</creatorcontrib><creatorcontrib>Bolaños, Juan P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Blasco, Daniel</au><au>Agulla, Jesús</au><au>Lapresa, Rebeca</au><au>Garcia-Macia, Marina</au><au>Bobo-Jimenez, Veronica</au><au>Garcia-Rodriguez, Dario</au><au>Manjarres-Raza, Israel</au><au>Fernandez, Emilio</au><au>Jeanson, Yannick</au><au>Khoury, Spiro</au><au>Portais, Jean-Charles</au><au>Padro, Daniel</au><au>Ramos-Cabrer, Pedro</au><au>Carmeliet, Peter</au><au>Almeida, Angeles</au><au>Bolaños, Juan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak neuronal glycolysis sustains cognition and organismal fitness</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>6</volume><issue>7</issue><spage>1253</spage><epage>1267</epage><pages>1253-1267</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>The energy cost of neuronal activity is mainly sustained by glucose
1
,
2
. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis
3
–
6
, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase-3 (PFKFB3)
3
,
7
,
8
, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through
Pfkfb3
expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD
+
) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining
Pfkfb3
expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD
+
restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.
Jiménez-Blasco et al. show that neurons exhibit moderately low glycolytic rates despite their activity being mainly supported by glucose to preserve redox balance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38789798</pmid><doi>10.1038/s42255-024-01049-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8901-3972</orcidid><orcidid>https://orcid.org/0000-0001-7961-1821</orcidid><orcidid>https://orcid.org/0000-0001-5325-3130</orcidid><orcidid>https://orcid.org/0000-0003-0365-7406</orcidid><orcidid>https://orcid.org/0000-0002-3908-9060</orcidid><orcidid>https://orcid.org/0000-0001-6314-9839</orcidid><orcidid>https://orcid.org/0000-0001-5416-130X</orcidid><orcidid>https://orcid.org/0000-0002-1384-1832</orcidid><orcidid>https://orcid.org/0000-0001-9574-2549</orcidid><orcidid>https://orcid.org/0000-0003-0368-7031</orcidid><orcidid>https://orcid.org/0000-0003-0485-8904</orcidid><orcidid>https://orcid.org/0000-0002-3949-6862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5812 |
ispartof | Nature metabolism, 2024-07, Vol.6 (7), p.1253-1267 |
issn | 2522-5812 2522-5812 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04224688v1 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 13/31 38/44 38/47 631/378/340 631/45/882 64/60 96/95 Biomedical and Life Sciences Letter Life Sciences |
title | Weak neuronal glycolysis sustains cognition and organismal fitness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20neuronal%20glycolysis%20sustains%20cognition%20and%20organismal%20fitness&rft.jtitle=Nature%20metabolism&rft.au=Jimenez-Blasco,%20Daniel&rft.date=2024-07-01&rft.volume=6&rft.issue=7&rft.spage=1253&rft.epage=1267&rft.pages=1253-1267&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-024-01049-0&rft_dat=%3Cproquest_hal_p%3E3060382068%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060382068&rft_id=info:pmid/38789798&rfr_iscdi=true |