Ionic conductivity of solid polymer electrolytes depending on elongation
•A sample environment enables to perform film elongation in an inert atmosphere.•This sample environment permits to perform impedance on solid polymer electrolytes.•Binary- and single-ion conducting solid polymer electrolytes are investigated in temperature.•Below melting temperature a defect zone a...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2023-11, Vol.469, p.143253, Article 143253 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 143253 |
container_title | Electrochimica acta |
container_volume | 469 |
creator | Jeanne-Brou, Roselyne Charvin, Nicolas de Moor, Gilles Flandin, Lionel Issa, Sébastien Phan, Trang N.T. Bouchet, Renaud Devaux, Didier |
description | •A sample environment enables to perform film elongation in an inert atmosphere.•This sample environment permits to perform impedance on solid polymer electrolytes.•Binary- and single-ion conducting solid polymer electrolytes are investigated in temperature.•Below melting temperature a defect zone appears with higher ionic conductivity.
Research on solid polymer electrolytes (SPEs) based on poly(ethylene oxide) (PEO) is essential to propose an alternative to the conventional liquid electrolyte in order to increase both the mechanical properties and the ionic conductivity. Strategies to increase the ionic conductivity of SPEs are typically based on the development of new polymer architectures, lithium salt natures, plasticizers, or additives. In addition, applying an external field such as magnetic, electric, pressure, or a mechanical deformation onto the SPEs can alter the resulting ionic transport properties. For the later one, the main difficulty lies in obtaining the instantaneous evolution of the ionic conductivity coupled with the mechanical deformation and its geometrical change, especially when a striction domain appears. For this, a dedicated sample environment was designed to perform tensile tests in an inert atmosphere on SPE membranes at different temperatures (below and above the PEO melting temperature). Moreover, a methodology to calculate the instantaneous in-plane ionic conductivity is proposed based on COMSOL simulations to back out the sample geometrical changes during elongation. A strong impact on the in-plane ionic conductivity is observed when comparing PEO electrolyte architectures; from homopolymer to crosslinked single-ion conducting via binary conducting block copolymer electrolytes. Below the PEO melting temperature, a striction domain appears upon elongation whose conductivity is higher than the one of the bulk by a factor 1.7 and 18 for PEO homopolymer and binary conducting PEO-based block copolymer electrolytes, respectively. |
doi_str_mv | 10.1016/j.electacta.2023.143253 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04224333v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468623014251</els_id><sourcerecordid>oai_HAL_hal_04224333v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-f0032585d5a14f1b70b7ac0afd11ffd9a05f2173a8a131711feb2ad99848ee943</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4G9-ph15lNdrN7LEVtoeBFzyHNR03ZJiVZC_33plZ6FQaGmXnvzcwj5BGhQsD2eVuZwahR5qhqqGmFjNYNvSIT7Dgtadf012QCgLRkbdfekruUtgDAWw4TslgG71ShgtffanQHNx6LYIsUBqeLfRiOOxOL3wUxF6NJhTZ747XzmyL4PAl-I0cX_D25sXJI5uEvT8nn68vHfFGu3t-W89mqVJSxsbQA-bqu0Y1EZnHNYc2lAmk1orW6l9DYGjmVnUSKPDfNupa67zvWGdMzOiVPZ90vOYh9dDsZjyJIJxazlTj1gNU1o5QeMGP5GatiSCkaeyEgiJN5Yisu5omTeeJsXmbOzkyTXzk4E0VSznhltIsZL3Rw_2r8AHvifME</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ionic conductivity of solid polymer electrolytes depending on elongation</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Jeanne-Brou, Roselyne ; Charvin, Nicolas ; de Moor, Gilles ; Flandin, Lionel ; Issa, Sébastien ; Phan, Trang N.T. ; Bouchet, Renaud ; Devaux, Didier</creator><creatorcontrib>Jeanne-Brou, Roselyne ; Charvin, Nicolas ; de Moor, Gilles ; Flandin, Lionel ; Issa, Sébastien ; Phan, Trang N.T. ; Bouchet, Renaud ; Devaux, Didier</creatorcontrib><description>•A sample environment enables to perform film elongation in an inert atmosphere.•This sample environment permits to perform impedance on solid polymer electrolytes.•Binary- and single-ion conducting solid polymer electrolytes are investigated in temperature.•Below melting temperature a defect zone appears with higher ionic conductivity.
Research on solid polymer electrolytes (SPEs) based on poly(ethylene oxide) (PEO) is essential to propose an alternative to the conventional liquid electrolyte in order to increase both the mechanical properties and the ionic conductivity. Strategies to increase the ionic conductivity of SPEs are typically based on the development of new polymer architectures, lithium salt natures, plasticizers, or additives. In addition, applying an external field such as magnetic, electric, pressure, or a mechanical deformation onto the SPEs can alter the resulting ionic transport properties. For the later one, the main difficulty lies in obtaining the instantaneous evolution of the ionic conductivity coupled with the mechanical deformation and its geometrical change, especially when a striction domain appears. For this, a dedicated sample environment was designed to perform tensile tests in an inert atmosphere on SPE membranes at different temperatures (below and above the PEO melting temperature). Moreover, a methodology to calculate the instantaneous in-plane ionic conductivity is proposed based on COMSOL simulations to back out the sample geometrical changes during elongation. A strong impact on the in-plane ionic conductivity is observed when comparing PEO electrolyte architectures; from homopolymer to crosslinked single-ion conducting via binary conducting block copolymer electrolytes. Below the PEO melting temperature, a striction domain appears upon elongation whose conductivity is higher than the one of the bulk by a factor 1.7 and 18 for PEO homopolymer and binary conducting PEO-based block copolymer electrolytes, respectively.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2023.143253</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropy ; Chemical Sciences ; In situ measurements ; Ionic conductivity ; Material chemistry ; Solid polymer electrolyte ; Stretching</subject><ispartof>Electrochimica acta, 2023-11, Vol.469, p.143253, Article 143253</ispartof><rights>2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-f0032585d5a14f1b70b7ac0afd11ffd9a05f2173a8a131711feb2ad99848ee943</cites><orcidid>0000-0003-3582-7705 ; 0000-0001-9905-2174 ; 0000-0002-1964-0556 ; 0000-0003-2696-0993 ; 0000-0003-3214-2903 ; 0000-0003-2713-5194 ; 0000-0002-4040-2253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2023.143253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04224333$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeanne-Brou, Roselyne</creatorcontrib><creatorcontrib>Charvin, Nicolas</creatorcontrib><creatorcontrib>de Moor, Gilles</creatorcontrib><creatorcontrib>Flandin, Lionel</creatorcontrib><creatorcontrib>Issa, Sébastien</creatorcontrib><creatorcontrib>Phan, Trang N.T.</creatorcontrib><creatorcontrib>Bouchet, Renaud</creatorcontrib><creatorcontrib>Devaux, Didier</creatorcontrib><title>Ionic conductivity of solid polymer electrolytes depending on elongation</title><title>Electrochimica acta</title><description>•A sample environment enables to perform film elongation in an inert atmosphere.•This sample environment permits to perform impedance on solid polymer electrolytes.•Binary- and single-ion conducting solid polymer electrolytes are investigated in temperature.•Below melting temperature a defect zone appears with higher ionic conductivity.
Research on solid polymer electrolytes (SPEs) based on poly(ethylene oxide) (PEO) is essential to propose an alternative to the conventional liquid electrolyte in order to increase both the mechanical properties and the ionic conductivity. Strategies to increase the ionic conductivity of SPEs are typically based on the development of new polymer architectures, lithium salt natures, plasticizers, or additives. In addition, applying an external field such as magnetic, electric, pressure, or a mechanical deformation onto the SPEs can alter the resulting ionic transport properties. For the later one, the main difficulty lies in obtaining the instantaneous evolution of the ionic conductivity coupled with the mechanical deformation and its geometrical change, especially when a striction domain appears. For this, a dedicated sample environment was designed to perform tensile tests in an inert atmosphere on SPE membranes at different temperatures (below and above the PEO melting temperature). Moreover, a methodology to calculate the instantaneous in-plane ionic conductivity is proposed based on COMSOL simulations to back out the sample geometrical changes during elongation. A strong impact on the in-plane ionic conductivity is observed when comparing PEO electrolyte architectures; from homopolymer to crosslinked single-ion conducting via binary conducting block copolymer electrolytes. Below the PEO melting temperature, a striction domain appears upon elongation whose conductivity is higher than the one of the bulk by a factor 1.7 and 18 for PEO homopolymer and binary conducting PEO-based block copolymer electrolytes, respectively.</description><subject>Anisotropy</subject><subject>Chemical Sciences</subject><subject>In situ measurements</subject><subject>Ionic conductivity</subject><subject>Material chemistry</subject><subject>Solid polymer electrolyte</subject><subject>Stretching</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQDaJgrf4G9-ph15lNdrN7LEVtoeBFzyHNR03ZJiVZC_33plZ6FQaGmXnvzcwj5BGhQsD2eVuZwahR5qhqqGmFjNYNvSIT7Dgtadf012QCgLRkbdfekruUtgDAWw4TslgG71ShgtffanQHNx6LYIsUBqeLfRiOOxOL3wUxF6NJhTZ747XzmyL4PAl-I0cX_D25sXJI5uEvT8nn68vHfFGu3t-W89mqVJSxsbQA-bqu0Y1EZnHNYc2lAmk1orW6l9DYGjmVnUSKPDfNupa67zvWGdMzOiVPZ90vOYh9dDsZjyJIJxazlTj1gNU1o5QeMGP5GatiSCkaeyEgiJN5Yisu5omTeeJsXmbOzkyTXzk4E0VSznhltIsZL3Rw_2r8AHvifME</recordid><startdate>20231120</startdate><enddate>20231120</enddate><creator>Jeanne-Brou, Roselyne</creator><creator>Charvin, Nicolas</creator><creator>de Moor, Gilles</creator><creator>Flandin, Lionel</creator><creator>Issa, Sébastien</creator><creator>Phan, Trang N.T.</creator><creator>Bouchet, Renaud</creator><creator>Devaux, Didier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3582-7705</orcidid><orcidid>https://orcid.org/0000-0001-9905-2174</orcidid><orcidid>https://orcid.org/0000-0002-1964-0556</orcidid><orcidid>https://orcid.org/0000-0003-2696-0993</orcidid><orcidid>https://orcid.org/0000-0003-3214-2903</orcidid><orcidid>https://orcid.org/0000-0003-2713-5194</orcidid><orcidid>https://orcid.org/0000-0002-4040-2253</orcidid></search><sort><creationdate>20231120</creationdate><title>Ionic conductivity of solid polymer electrolytes depending on elongation</title><author>Jeanne-Brou, Roselyne ; Charvin, Nicolas ; de Moor, Gilles ; Flandin, Lionel ; Issa, Sébastien ; Phan, Trang N.T. ; Bouchet, Renaud ; Devaux, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-f0032585d5a14f1b70b7ac0afd11ffd9a05f2173a8a131711feb2ad99848ee943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Chemical Sciences</topic><topic>In situ measurements</topic><topic>Ionic conductivity</topic><topic>Material chemistry</topic><topic>Solid polymer electrolyte</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeanne-Brou, Roselyne</creatorcontrib><creatorcontrib>Charvin, Nicolas</creatorcontrib><creatorcontrib>de Moor, Gilles</creatorcontrib><creatorcontrib>Flandin, Lionel</creatorcontrib><creatorcontrib>Issa, Sébastien</creatorcontrib><creatorcontrib>Phan, Trang N.T.</creatorcontrib><creatorcontrib>Bouchet, Renaud</creatorcontrib><creatorcontrib>Devaux, Didier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeanne-Brou, Roselyne</au><au>Charvin, Nicolas</au><au>de Moor, Gilles</au><au>Flandin, Lionel</au><au>Issa, Sébastien</au><au>Phan, Trang N.T.</au><au>Bouchet, Renaud</au><au>Devaux, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic conductivity of solid polymer electrolytes depending on elongation</atitle><jtitle>Electrochimica acta</jtitle><date>2023-11-20</date><risdate>2023</risdate><volume>469</volume><spage>143253</spage><pages>143253-</pages><artnum>143253</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•A sample environment enables to perform film elongation in an inert atmosphere.•This sample environment permits to perform impedance on solid polymer electrolytes.•Binary- and single-ion conducting solid polymer electrolytes are investigated in temperature.•Below melting temperature a defect zone appears with higher ionic conductivity.
Research on solid polymer electrolytes (SPEs) based on poly(ethylene oxide) (PEO) is essential to propose an alternative to the conventional liquid electrolyte in order to increase both the mechanical properties and the ionic conductivity. Strategies to increase the ionic conductivity of SPEs are typically based on the development of new polymer architectures, lithium salt natures, plasticizers, or additives. In addition, applying an external field such as magnetic, electric, pressure, or a mechanical deformation onto the SPEs can alter the resulting ionic transport properties. For the later one, the main difficulty lies in obtaining the instantaneous evolution of the ionic conductivity coupled with the mechanical deformation and its geometrical change, especially when a striction domain appears. For this, a dedicated sample environment was designed to perform tensile tests in an inert atmosphere on SPE membranes at different temperatures (below and above the PEO melting temperature). Moreover, a methodology to calculate the instantaneous in-plane ionic conductivity is proposed based on COMSOL simulations to back out the sample geometrical changes during elongation. A strong impact on the in-plane ionic conductivity is observed when comparing PEO electrolyte architectures; from homopolymer to crosslinked single-ion conducting via binary conducting block copolymer electrolytes. Below the PEO melting temperature, a striction domain appears upon elongation whose conductivity is higher than the one of the bulk by a factor 1.7 and 18 for PEO homopolymer and binary conducting PEO-based block copolymer electrolytes, respectively.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2023.143253</doi><orcidid>https://orcid.org/0000-0003-3582-7705</orcidid><orcidid>https://orcid.org/0000-0001-9905-2174</orcidid><orcidid>https://orcid.org/0000-0002-1964-0556</orcidid><orcidid>https://orcid.org/0000-0003-2696-0993</orcidid><orcidid>https://orcid.org/0000-0003-3214-2903</orcidid><orcidid>https://orcid.org/0000-0003-2713-5194</orcidid><orcidid>https://orcid.org/0000-0002-4040-2253</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2023-11, Vol.469, p.143253, Article 143253 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04224333v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Anisotropy Chemical Sciences In situ measurements Ionic conductivity Material chemistry Solid polymer electrolyte Stretching |
title | Ionic conductivity of solid polymer electrolytes depending on elongation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20conductivity%20of%20solid%20polymer%20electrolytes%20depending%20on%20elongation&rft.jtitle=Electrochimica%20acta&rft.au=Jeanne-Brou,%20Roselyne&rft.date=2023-11-20&rft.volume=469&rft.spage=143253&rft.pages=143253-&rft.artnum=143253&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2023.143253&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04224333v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0013468623014251&rfr_iscdi=true |