Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2
Platinum diselenide () is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the mate...
Gespeichert in:
Veröffentlicht in: | InfoMat 2023-11, Vol.5 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | InfoMat |
container_volume | 5 |
creator | Hemmat, Minoosh Ayari, Sabrine Mičica, Martin Vergnet, Hadrien Guo, Shasha Arfaoui, Mehdi Yu, Xuechao Vala, Daniel Wright, Adrien Postava, Kamil Mangeney, Juliette Carosella, Francesca Jaziri, Sihem Wang, Qi Jie Liu, Zheng Tignon, Jérôme Ferreira, Robson Baudin, Emmanuel Dhillon, Sukhdeep |
description | Platinum diselenide () is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the material unique THz photonic properties that can be layer‐engineered. Here, we demonstrate that a controlled THz nonlinearity—tuned from monolayer to bulk —can be realized in wafer size polycrystalline through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the layer interaction with the substrate for a broken material centrosymmetry, permitting a second order nonlinearity. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering are highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when becomes a semimetal and when the K‐valleys can be excited. As well as showing that is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up a new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation.
image |
doi_str_mv | 10.1002/inf2.12468 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04208873v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04208873v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1101-8ca106798959d1baab4ffe95aee71c7ecf5f475c9925cabb7837c2b672095b3</originalsourceid><addsrcrecordid>eNpNUMFKAzEUDKJgqb34BbkqbE2ym83mWIpaYUGh3pe32YRGtokka2U9-Ql-o19i2op4ejPvzQy8QeiSkjklhN1YZ9icsqKsTtCE8VJkOS356T98jmYxvpAk5qRgnE5QX8Oow_fnl_JuCL7vdYedd711GgIedICNDsMH3kE6jUnhrIrYOjy8--Tq7Fa7aL2DHke9TWxICFx3YCmze1ODD_hpWGvMLtCZgT7q2e-covXd7fNyldWP9w_LRZ0pSgnNKgWUlEJWksuOtgBtYYyWHLQWVAmtDDeF4EpKxhW0rahyoVhbCkYkb_MpujqmbqBvXoPdQhgbD7ZZLepmv0uvk6oS-Y4m7fVRq4KPMWjzZ6Ck2Zfa7EttDqXmP-SHbhM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2</title><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hemmat, Minoosh ; Ayari, Sabrine ; Mičica, Martin ; Vergnet, Hadrien ; Guo, Shasha ; Arfaoui, Mehdi ; Yu, Xuechao ; Vala, Daniel ; Wright, Adrien ; Postava, Kamil ; Mangeney, Juliette ; Carosella, Francesca ; Jaziri, Sihem ; Wang, Qi Jie ; Liu, Zheng ; Tignon, Jérôme ; Ferreira, Robson ; Baudin, Emmanuel ; Dhillon, Sukhdeep</creator><creatorcontrib>Hemmat, Minoosh ; Ayari, Sabrine ; Mičica, Martin ; Vergnet, Hadrien ; Guo, Shasha ; Arfaoui, Mehdi ; Yu, Xuechao ; Vala, Daniel ; Wright, Adrien ; Postava, Kamil ; Mangeney, Juliette ; Carosella, Francesca ; Jaziri, Sihem ; Wang, Qi Jie ; Liu, Zheng ; Tignon, Jérôme ; Ferreira, Robson ; Baudin, Emmanuel ; Dhillon, Sukhdeep</creatorcontrib><description>Platinum diselenide () is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the material unique THz photonic properties that can be layer‐engineered. Here, we demonstrate that a controlled THz nonlinearity—tuned from monolayer to bulk —can be realized in wafer size polycrystalline through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the layer interaction with the substrate for a broken material centrosymmetry, permitting a second order nonlinearity. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering are highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when becomes a semimetal and when the K‐valleys can be excited. As well as showing that is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up a new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation.
image</description><identifier>ISSN: 2567-3165</identifier><identifier>EISSN: 2567-3165</identifier><identifier>DOI: 10.1002/inf2.12468</identifier><language>eng</language><publisher>Wiley</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>InfoMat, 2023-11, Vol.5 (11)</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1101-8ca106798959d1baab4ffe95aee71c7ecf5f475c9925cabb7837c2b672095b3</citedby><cites>FETCH-LOGICAL-c1101-8ca106798959d1baab4ffe95aee71c7ecf5f475c9925cabb7837c2b672095b3</cites><orcidid>0000-0003-1425-1911 ; 0000-0002-8825-7198 ; 0000-0003-2067-7177 ; 0000-0002-5487-9570 ; 0000-0002-7599-9889 ; 0000-0002-4354-4257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04208873$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemmat, Minoosh</creatorcontrib><creatorcontrib>Ayari, Sabrine</creatorcontrib><creatorcontrib>Mičica, Martin</creatorcontrib><creatorcontrib>Vergnet, Hadrien</creatorcontrib><creatorcontrib>Guo, Shasha</creatorcontrib><creatorcontrib>Arfaoui, Mehdi</creatorcontrib><creatorcontrib>Yu, Xuechao</creatorcontrib><creatorcontrib>Vala, Daniel</creatorcontrib><creatorcontrib>Wright, Adrien</creatorcontrib><creatorcontrib>Postava, Kamil</creatorcontrib><creatorcontrib>Mangeney, Juliette</creatorcontrib><creatorcontrib>Carosella, Francesca</creatorcontrib><creatorcontrib>Jaziri, Sihem</creatorcontrib><creatorcontrib>Wang, Qi Jie</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Tignon, Jérôme</creatorcontrib><creatorcontrib>Ferreira, Robson</creatorcontrib><creatorcontrib>Baudin, Emmanuel</creatorcontrib><creatorcontrib>Dhillon, Sukhdeep</creatorcontrib><title>Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2</title><title>InfoMat</title><description>Platinum diselenide () is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the material unique THz photonic properties that can be layer‐engineered. Here, we demonstrate that a controlled THz nonlinearity—tuned from monolayer to bulk —can be realized in wafer size polycrystalline through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the layer interaction with the substrate for a broken material centrosymmetry, permitting a second order nonlinearity. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering are highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when becomes a semimetal and when the K‐valleys can be excited. As well as showing that is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up a new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation.
image</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>2567-3165</issn><issn>2567-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNUMFKAzEUDKJgqb34BbkqbE2ym83mWIpaYUGh3pe32YRGtokka2U9-Ql-o19i2op4ejPvzQy8QeiSkjklhN1YZ9icsqKsTtCE8VJkOS356T98jmYxvpAk5qRgnE5QX8Oow_fnl_JuCL7vdYedd711GgIedICNDsMH3kE6jUnhrIrYOjy8--Tq7Fa7aL2DHke9TWxICFx3YCmze1ODD_hpWGvMLtCZgT7q2e-covXd7fNyldWP9w_LRZ0pSgnNKgWUlEJWksuOtgBtYYyWHLQWVAmtDDeF4EpKxhW0rahyoVhbCkYkb_MpujqmbqBvXoPdQhgbD7ZZLepmv0uvk6oS-Y4m7fVRq4KPMWjzZ6Ck2Zfa7EttDqXmP-SHbhM</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Hemmat, Minoosh</creator><creator>Ayari, Sabrine</creator><creator>Mičica, Martin</creator><creator>Vergnet, Hadrien</creator><creator>Guo, Shasha</creator><creator>Arfaoui, Mehdi</creator><creator>Yu, Xuechao</creator><creator>Vala, Daniel</creator><creator>Wright, Adrien</creator><creator>Postava, Kamil</creator><creator>Mangeney, Juliette</creator><creator>Carosella, Francesca</creator><creator>Jaziri, Sihem</creator><creator>Wang, Qi Jie</creator><creator>Liu, Zheng</creator><creator>Tignon, Jérôme</creator><creator>Ferreira, Robson</creator><creator>Baudin, Emmanuel</creator><creator>Dhillon, Sukhdeep</creator><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1425-1911</orcidid><orcidid>https://orcid.org/0000-0002-8825-7198</orcidid><orcidid>https://orcid.org/0000-0003-2067-7177</orcidid><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0002-7599-9889</orcidid><orcidid>https://orcid.org/0000-0002-4354-4257</orcidid></search><sort><creationdate>202311</creationdate><title>Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2</title><author>Hemmat, Minoosh ; Ayari, Sabrine ; Mičica, Martin ; Vergnet, Hadrien ; Guo, Shasha ; Arfaoui, Mehdi ; Yu, Xuechao ; Vala, Daniel ; Wright, Adrien ; Postava, Kamil ; Mangeney, Juliette ; Carosella, Francesca ; Jaziri, Sihem ; Wang, Qi Jie ; Liu, Zheng ; Tignon, Jérôme ; Ferreira, Robson ; Baudin, Emmanuel ; Dhillon, Sukhdeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1101-8ca106798959d1baab4ffe95aee71c7ecf5f475c9925cabb7837c2b672095b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemmat, Minoosh</creatorcontrib><creatorcontrib>Ayari, Sabrine</creatorcontrib><creatorcontrib>Mičica, Martin</creatorcontrib><creatorcontrib>Vergnet, Hadrien</creatorcontrib><creatorcontrib>Guo, Shasha</creatorcontrib><creatorcontrib>Arfaoui, Mehdi</creatorcontrib><creatorcontrib>Yu, Xuechao</creatorcontrib><creatorcontrib>Vala, Daniel</creatorcontrib><creatorcontrib>Wright, Adrien</creatorcontrib><creatorcontrib>Postava, Kamil</creatorcontrib><creatorcontrib>Mangeney, Juliette</creatorcontrib><creatorcontrib>Carosella, Francesca</creatorcontrib><creatorcontrib>Jaziri, Sihem</creatorcontrib><creatorcontrib>Wang, Qi Jie</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Tignon, Jérôme</creatorcontrib><creatorcontrib>Ferreira, Robson</creatorcontrib><creatorcontrib>Baudin, Emmanuel</creatorcontrib><creatorcontrib>Dhillon, Sukhdeep</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>InfoMat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemmat, Minoosh</au><au>Ayari, Sabrine</au><au>Mičica, Martin</au><au>Vergnet, Hadrien</au><au>Guo, Shasha</au><au>Arfaoui, Mehdi</au><au>Yu, Xuechao</au><au>Vala, Daniel</au><au>Wright, Adrien</au><au>Postava, Kamil</au><au>Mangeney, Juliette</au><au>Carosella, Francesca</au><au>Jaziri, Sihem</au><au>Wang, Qi Jie</au><au>Liu, Zheng</au><au>Tignon, Jérôme</au><au>Ferreira, Robson</au><au>Baudin, Emmanuel</au><au>Dhillon, Sukhdeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2</atitle><jtitle>InfoMat</jtitle><date>2023-11</date><risdate>2023</risdate><volume>5</volume><issue>11</issue><issn>2567-3165</issn><eissn>2567-3165</eissn><abstract>Platinum diselenide () is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the material unique THz photonic properties that can be layer‐engineered. Here, we demonstrate that a controlled THz nonlinearity—tuned from monolayer to bulk —can be realized in wafer size polycrystalline through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the layer interaction with the substrate for a broken material centrosymmetry, permitting a second order nonlinearity. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering are highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when becomes a semimetal and when the K‐valleys can be excited. As well as showing that is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up a new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation.
image</abstract><pub>Wiley</pub><doi>10.1002/inf2.12468</doi><orcidid>https://orcid.org/0000-0003-1425-1911</orcidid><orcidid>https://orcid.org/0000-0002-8825-7198</orcidid><orcidid>https://orcid.org/0000-0003-2067-7177</orcidid><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0002-7599-9889</orcidid><orcidid>https://orcid.org/0000-0002-4354-4257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2567-3165 |
ispartof | InfoMat, 2023-11, Vol.5 (11) |
issn | 2567-3165 2567-3165 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04208873v1 |
source | Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Condensed Matter Materials Science Physics |
title | Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer%E2%80%90controlled%20nonlinear%20terahertz%20valleytronics%20in%20two%E2%80%90dimensional%20semimetal%20and%20semiconductor%20PtSe%202&rft.jtitle=InfoMat&rft.au=Hemmat,%20Minoosh&rft.date=2023-11&rft.volume=5&rft.issue=11&rft.issn=2567-3165&rft.eissn=2567-3165&rft_id=info:doi/10.1002/inf2.12468&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04208873v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |