Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions
Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s −1 . White...
Gespeichert in:
Veröffentlicht in: | Journal of physical oceanography 2019-09, Vol.49 (9), p.2291-2307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2307 |
---|---|
container_issue | 9 |
container_start_page | 2291 |
container_title | Journal of physical oceanography |
container_volume | 49 |
creator | Hwang, Paul A. Reul, Nicolas Meissner, Thomas Yueh, Simon H. |
description | Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s
−1
. Whitecap contribution is a critical component of ocean surface microwave thermal emission. In the forward solution of microwave thermal emission, the input forcing parameter is wind speed, which is used to generate the modeled surface wind stress, surface wave spectrum, and whitecap coverage necessary for the subsequent electromagnetic (EM) computation. In this respect, microwave radiometer data can be used to evaluate various formulations of the drag coefficient, whitecap coverage, and surface wave spectrum. In reverse, whitecap coverage and surface wind stress can be retrieved from microwave radiometer data by employing precalculated solutions of an analytical microwave thermal emission model that yields good agreement with field measurements. There are many published microwave radiometer datasets covering a wide range of frequency, incidence angle, and both vertical and horizontal polarizations, with maximum wind speed exceeding 90 m s
−1
. These datasets provide information of whitecap coverage and surface wind stress from global oceans and in extreme wind conditions. Breaking wave energy dissipation rate per unit surface area can be estimated also by making use of its linear relationship with whitecap coverage derived from earlier studies. |
doi_str_mv | 10.1175/JPO-D-19-0061.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04202333v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398304176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-5d6854c45a1d42f038fe0a509549e637aa7a78cd998dc0d3a9749f0aaf1bcd3a3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExE9e23iyUNhtrv9WG8EETQYjB_huJm2WykpXdwtVf69WzBeZjKTJ09mXkKuKQwojcPh08vCv_ep8AEiOqAnpEfDAHzgSXhKegBB4LMohnNyYe0aOigQPVIsV2WjMtx6WOfesnTlrTHKWm-RWmVabEpdWy_de89lZvQ3tsp7xbzUG9UoY--8aaVTrLyxbpXBT3XQTH6cYqPcss7Lg-CSnBVYWXX11_vk42HyPp7588X0cTya-xmn0PhhHiUhz3iINOdBASwpFGAIIuRCRSxGjDFOslyIJM8gZyhiLgpALGiauZH1ye3Ru8JKbk25QbOXGks5G81ltwMeQMAYa6ljb47s1uivnbKNXOudqd15MmAiYcBpHDlqeKTc99YaVfxrKcgueOmCl_eSCtllKin7BRcKdhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398304176</pqid></control><display><type>article</type><title>Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hwang, Paul A. ; Reul, Nicolas ; Meissner, Thomas ; Yueh, Simon H.</creator><creatorcontrib>Hwang, Paul A. ; Reul, Nicolas ; Meissner, Thomas ; Yueh, Simon H.</creatorcontrib><description>Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s
−1
. Whitecap contribution is a critical component of ocean surface microwave thermal emission. In the forward solution of microwave thermal emission, the input forcing parameter is wind speed, which is used to generate the modeled surface wind stress, surface wave spectrum, and whitecap coverage necessary for the subsequent electromagnetic (EM) computation. In this respect, microwave radiometer data can be used to evaluate various formulations of the drag coefficient, whitecap coverage, and surface wave spectrum. In reverse, whitecap coverage and surface wind stress can be retrieved from microwave radiometer data by employing precalculated solutions of an analytical microwave thermal emission model that yields good agreement with field measurements. There are many published microwave radiometer datasets covering a wide range of frequency, incidence angle, and both vertical and horizontal polarizations, with maximum wind speed exceeding 90 m s
−1
. These datasets provide information of whitecap coverage and surface wind stress from global oceans and in extreme wind conditions. Breaking wave energy dissipation rate per unit surface area can be estimated also by making use of its linear relationship with whitecap coverage derived from earlier studies.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/JPO-D-19-0061.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Breaking waves ; Computation ; Critical components ; Datasets ; Dielectric properties ; Drag coefficient ; Drag coefficients ; Emission analysis ; Emissions ; Energy dissipation ; Energy exchange ; Extreme wind speeds ; Horizontal polarization ; Incidence angle ; Maximum winds ; Microwave imagery ; Microwave radiometers ; Ocean surface ; Oceans ; Radiometers ; Sciences of the Universe ; Seawater ; Surface water waves ; Surface waves ; Surface wind ; Thermal emission ; Vertical polarization ; Wave breaking ; Wave energy ; Wave power ; Wave spectra ; Whitecaps ; Wind ; Wind speed ; Wind stress</subject><ispartof>Journal of physical oceanography, 2019-09, Vol.49 (9), p.2291-2307</ispartof><rights>Copyright American Meteorological Society Sep 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-5d6854c45a1d42f038fe0a509549e637aa7a78cd998dc0d3a9749f0aaf1bcd3a3</citedby><cites>FETCH-LOGICAL-c410t-5d6854c45a1d42f038fe0a509549e637aa7a78cd998dc0d3a9749f0aaf1bcd3a3</cites><orcidid>0000-0003-4881-2967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3668,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04202333$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Paul A.</creatorcontrib><creatorcontrib>Reul, Nicolas</creatorcontrib><creatorcontrib>Meissner, Thomas</creatorcontrib><creatorcontrib>Yueh, Simon H.</creatorcontrib><title>Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions</title><title>Journal of physical oceanography</title><description>Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s
−1
. Whitecap contribution is a critical component of ocean surface microwave thermal emission. In the forward solution of microwave thermal emission, the input forcing parameter is wind speed, which is used to generate the modeled surface wind stress, surface wave spectrum, and whitecap coverage necessary for the subsequent electromagnetic (EM) computation. In this respect, microwave radiometer data can be used to evaluate various formulations of the drag coefficient, whitecap coverage, and surface wave spectrum. In reverse, whitecap coverage and surface wind stress can be retrieved from microwave radiometer data by employing precalculated solutions of an analytical microwave thermal emission model that yields good agreement with field measurements. There are many published microwave radiometer datasets covering a wide range of frequency, incidence angle, and both vertical and horizontal polarizations, with maximum wind speed exceeding 90 m s
−1
. These datasets provide information of whitecap coverage and surface wind stress from global oceans and in extreme wind conditions. Breaking wave energy dissipation rate per unit surface area can be estimated also by making use of its linear relationship with whitecap coverage derived from earlier studies.</description><subject>Breaking waves</subject><subject>Computation</subject><subject>Critical components</subject><subject>Datasets</subject><subject>Dielectric properties</subject><subject>Drag coefficient</subject><subject>Drag coefficients</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Extreme wind speeds</subject><subject>Horizontal polarization</subject><subject>Incidence angle</subject><subject>Maximum winds</subject><subject>Microwave imagery</subject><subject>Microwave radiometers</subject><subject>Ocean surface</subject><subject>Oceans</subject><subject>Radiometers</subject><subject>Sciences of the Universe</subject><subject>Seawater</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Surface wind</subject><subject>Thermal emission</subject><subject>Vertical polarization</subject><subject>Wave breaking</subject><subject>Wave energy</subject><subject>Wave power</subject><subject>Wave spectra</subject><subject>Whitecaps</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Wind stress</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1PwkAQhjdGExE9e23iyUNhtrv9WG8EETQYjB_huJm2WykpXdwtVf69WzBeZjKTJ09mXkKuKQwojcPh08vCv_ep8AEiOqAnpEfDAHzgSXhKegBB4LMohnNyYe0aOigQPVIsV2WjMtx6WOfesnTlrTHKWm-RWmVabEpdWy_de89lZvQ3tsp7xbzUG9UoY--8aaVTrLyxbpXBT3XQTH6cYqPcss7Lg-CSnBVYWXX11_vk42HyPp7588X0cTya-xmn0PhhHiUhz3iINOdBASwpFGAIIuRCRSxGjDFOslyIJM8gZyhiLgpALGiauZH1ye3Ru8JKbk25QbOXGks5G81ltwMeQMAYa6ljb47s1uivnbKNXOudqd15MmAiYcBpHDlqeKTc99YaVfxrKcgueOmCl_eSCtllKin7BRcKdhA</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Hwang, Paul A.</creator><creator>Reul, Nicolas</creator><creator>Meissner, Thomas</creator><creator>Yueh, Simon H.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4881-2967</orcidid></search><sort><creationdate>201909</creationdate><title>Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions</title><author>Hwang, Paul A. ; Reul, Nicolas ; Meissner, Thomas ; Yueh, Simon H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-5d6854c45a1d42f038fe0a509549e637aa7a78cd998dc0d3a9749f0aaf1bcd3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Breaking waves</topic><topic>Computation</topic><topic>Critical components</topic><topic>Datasets</topic><topic>Dielectric properties</topic><topic>Drag coefficient</topic><topic>Drag coefficients</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Extreme wind speeds</topic><topic>Horizontal polarization</topic><topic>Incidence angle</topic><topic>Maximum winds</topic><topic>Microwave imagery</topic><topic>Microwave radiometers</topic><topic>Ocean surface</topic><topic>Oceans</topic><topic>Radiometers</topic><topic>Sciences of the Universe</topic><topic>Seawater</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Surface wind</topic><topic>Thermal emission</topic><topic>Vertical polarization</topic><topic>Wave breaking</topic><topic>Wave energy</topic><topic>Wave power</topic><topic>Wave spectra</topic><topic>Whitecaps</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Wind stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Paul A.</creatorcontrib><creatorcontrib>Reul, Nicolas</creatorcontrib><creatorcontrib>Meissner, Thomas</creatorcontrib><creatorcontrib>Yueh, Simon H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Paul A.</au><au>Reul, Nicolas</au><au>Meissner, Thomas</au><au>Yueh, Simon H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions</atitle><jtitle>Journal of physical oceanography</jtitle><date>2019-09</date><risdate>2019</risdate><volume>49</volume><issue>9</issue><spage>2291</spage><epage>2307</epage><pages>2291-2307</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><abstract>Whitecaps manifest surface wave breaking that impacts many ocean processes, of which surface wind stress is the driving force. For close to a half century of quantitative whitecap reporting, only a small number of observations are obtained under conditions with wind speed exceeding 25 m s
−1
. Whitecap contribution is a critical component of ocean surface microwave thermal emission. In the forward solution of microwave thermal emission, the input forcing parameter is wind speed, which is used to generate the modeled surface wind stress, surface wave spectrum, and whitecap coverage necessary for the subsequent electromagnetic (EM) computation. In this respect, microwave radiometer data can be used to evaluate various formulations of the drag coefficient, whitecap coverage, and surface wave spectrum. In reverse, whitecap coverage and surface wind stress can be retrieved from microwave radiometer data by employing precalculated solutions of an analytical microwave thermal emission model that yields good agreement with field measurements. There are many published microwave radiometer datasets covering a wide range of frequency, incidence angle, and both vertical and horizontal polarizations, with maximum wind speed exceeding 90 m s
−1
. These datasets provide information of whitecap coverage and surface wind stress from global oceans and in extreme wind conditions. Breaking wave energy dissipation rate per unit surface area can be estimated also by making use of its linear relationship with whitecap coverage derived from earlier studies.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JPO-D-19-0061.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4881-2967</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3670 |
ispartof | Journal of physical oceanography, 2019-09, Vol.49 (9), p.2291-2307 |
issn | 0022-3670 1520-0485 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04202333v1 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Breaking waves Computation Critical components Datasets Dielectric properties Drag coefficient Drag coefficients Emission analysis Emissions Energy dissipation Energy exchange Extreme wind speeds Horizontal polarization Incidence angle Maximum winds Microwave imagery Microwave radiometers Ocean surface Oceans Radiometers Sciences of the Universe Seawater Surface water waves Surface waves Surface wind Thermal emission Vertical polarization Wave breaking Wave energy Wave power Wave spectra Whitecaps Wind Wind speed Wind stress |
title | Whitecap and Wind Stress Observations by Microwave Radiometers: Global Coverage and Extreme Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whitecap%20and%20Wind%20Stress%20Observations%20by%20Microwave%20Radiometers:%20Global%20Coverage%20and%20Extreme%20Conditions&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=Hwang,%20Paul%20A.&rft.date=2019-09&rft.volume=49&rft.issue=9&rft.spage=2291&rft.epage=2307&rft.pages=2291-2307&rft.issn=0022-3670&rft.eissn=1520-0485&rft_id=info:doi/10.1175/JPO-D-19-0061.1&rft_dat=%3Cproquest_hal_p%3E2398304176%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398304176&rft_id=info:pmid/&rfr_iscdi=true |