P-wave velocity anisotropy in Hamra Quartzites reservoir, Hassi Messaoud oil field in Algeria

The P-wave velocity and physical parameters were measured for core samples taken from Hamra Quartzites reservoir in Hassi Messaoud oil field (Algeria). The Pundit Lab tool was used to measure the P-wave velocity and the optical scanning technology was utilized for thermal conductivity. The permeabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2022-05, Vol.15 (9), Article 800
Hauptverfasser: Zerrouki, Ahmed Ali, Geraud, Yves, Dobbi, Abdelmadjid, Diraisson, Marc, Baddari, Kamel, Lebtahi, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Arabian journal of geosciences
container_volume 15
creator Zerrouki, Ahmed Ali
Geraud, Yves
Dobbi, Abdelmadjid
Diraisson, Marc
Baddari, Kamel
Lebtahi, Hamid
description The P-wave velocity and physical parameters were measured for core samples taken from Hamra Quartzites reservoir in Hassi Messaoud oil field (Algeria). The Pundit Lab tool was used to measure the P-wave velocity and the optical scanning technology was utilized for thermal conductivity. The permeability and porosity are also executed for cylindrical samples; these measures are taken under room temperature and ambient pressure. The physical and petrophysical measurements were carried out in order to search relationships between P-wave velocity anisotropy, thermal conductivity, grain size, density, P-wave velocity, thermal conductivity anisotropy, and porosity for all samples after their classification in uncemented and cemented sets. The origin of P-wave velocity anisotropy basing on thin section of samples and using microscopy analysis is also investigated. The obtained results show good correlation coefficients (R) between P-wave velocity anisotropy, grain size, P-wave velocity, and thermal conductivity in cemented set. The highest correlation coefficient is found between P-wave velocity anisotropy and thermal conductivity in cemented set ( R =0.92). The P-wave velocity anisotropy ranges between 9.93 and 11.14% for anisotropic samples. The microscopy analysis of thin sections for studied samples shows that open and closed microcracks are the origin of P-wave velocity anisotropy in Hamra Quartzites reservoir. The P-wave velocity anisotropy of samples is proportional to the width of parallel microcracks.
doi_str_mv 10.1007/s12517-022-10022-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04194102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652090441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1988-bfb68f3f4ef6caf1b4b40ff8631fb59342fec1038dd2f9971c78de5420fcd5903</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAk2A1X5q26XEMdcJEBT1KSNtEM7pmJm1l_npTK_PmJcmXPO9LeBA6BXIJhGRXHmgCWUQojcIcVr6HJsDTNMqSmO_vzgCH6Mj7FSEpJxmfoNfH6FP2CveqtqVpt1g2xtvW2c0WmwYv5NpJ_NRJ136ZVnnslFeut8ZdhDfvDb5X3kvbVdiaGmuj6mrIzeo35Yw8Rgda1l6d_O5T9HJz_TxfRMuH27v5bBmVkHMeFbpIuY41UzotpYaCFYxozdMYdJHkMaNalUBiXlVU53kGZcYrlTBKdFklOYmn6HzsfZe12Dizlm4rrDRiMVuK4Y4wyBkQ2kNgz0Z24-xHp3wrVrZzTfieoGlCSU4YGyg6UqWz3juld7VAxKBcjMpFkC1-lAseQvEY8gFugoG_6n9S3y8Hg6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652090441</pqid></control><display><type>article</type><title>P-wave velocity anisotropy in Hamra Quartzites reservoir, Hassi Messaoud oil field in Algeria</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zerrouki, Ahmed Ali ; Geraud, Yves ; Dobbi, Abdelmadjid ; Diraisson, Marc ; Baddari, Kamel ; Lebtahi, Hamid</creator><creatorcontrib>Zerrouki, Ahmed Ali ; Geraud, Yves ; Dobbi, Abdelmadjid ; Diraisson, Marc ; Baddari, Kamel ; Lebtahi, Hamid</creatorcontrib><description>The P-wave velocity and physical parameters were measured for core samples taken from Hamra Quartzites reservoir in Hassi Messaoud oil field (Algeria). The Pundit Lab tool was used to measure the P-wave velocity and the optical scanning technology was utilized for thermal conductivity. The permeability and porosity are also executed for cylindrical samples; these measures are taken under room temperature and ambient pressure. The physical and petrophysical measurements were carried out in order to search relationships between P-wave velocity anisotropy, thermal conductivity, grain size, density, P-wave velocity, thermal conductivity anisotropy, and porosity for all samples after their classification in uncemented and cemented sets. The origin of P-wave velocity anisotropy basing on thin section of samples and using microscopy analysis is also investigated. The obtained results show good correlation coefficients (R) between P-wave velocity anisotropy, grain size, P-wave velocity, and thermal conductivity in cemented set. The highest correlation coefficient is found between P-wave velocity anisotropy and thermal conductivity in cemented set ( R =0.92). The P-wave velocity anisotropy ranges between 9.93 and 11.14% for anisotropic samples. The microscopy analysis of thin sections for studied samples shows that open and closed microcracks are the origin of P-wave velocity anisotropy in Hamra Quartzites reservoir. The P-wave velocity anisotropy of samples is proportional to the width of parallel microcracks.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-022-10022-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anisotropy ; Coefficients ; Cores ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Grain size ; Heat conductivity ; Heat transfer ; Microcracks ; Microscopy ; Oil and gas fields ; Oil fields ; Original Paper ; P waves ; Particle size ; Permeability ; Physical properties ; Porosity ; Pressure ; Quartzite ; Reservoirs ; Room temperature ; Sciences of the Universe ; Thermal conductivity ; Velocity ; Wave velocity</subject><ispartof>Arabian journal of geosciences, 2022-05, Vol.15 (9), Article 800</ispartof><rights>Saudi Society for Geosciences 2022</rights><rights>Saudi Society for Geosciences 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1988-bfb68f3f4ef6caf1b4b40ff8631fb59342fec1038dd2f9971c78de5420fcd5903</citedby><cites>FETCH-LOGICAL-c1988-bfb68f3f4ef6caf1b4b40ff8631fb59342fec1038dd2f9971c78de5420fcd5903</cites><orcidid>0000-0002-2352-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-022-10022-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-022-10022-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-04194102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zerrouki, Ahmed Ali</creatorcontrib><creatorcontrib>Geraud, Yves</creatorcontrib><creatorcontrib>Dobbi, Abdelmadjid</creatorcontrib><creatorcontrib>Diraisson, Marc</creatorcontrib><creatorcontrib>Baddari, Kamel</creatorcontrib><creatorcontrib>Lebtahi, Hamid</creatorcontrib><title>P-wave velocity anisotropy in Hamra Quartzites reservoir, Hassi Messaoud oil field in Algeria</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>The P-wave velocity and physical parameters were measured for core samples taken from Hamra Quartzites reservoir in Hassi Messaoud oil field (Algeria). The Pundit Lab tool was used to measure the P-wave velocity and the optical scanning technology was utilized for thermal conductivity. The permeability and porosity are also executed for cylindrical samples; these measures are taken under room temperature and ambient pressure. The physical and petrophysical measurements were carried out in order to search relationships between P-wave velocity anisotropy, thermal conductivity, grain size, density, P-wave velocity, thermal conductivity anisotropy, and porosity for all samples after their classification in uncemented and cemented sets. The origin of P-wave velocity anisotropy basing on thin section of samples and using microscopy analysis is also investigated. The obtained results show good correlation coefficients (R) between P-wave velocity anisotropy, grain size, P-wave velocity, and thermal conductivity in cemented set. The highest correlation coefficient is found between P-wave velocity anisotropy and thermal conductivity in cemented set ( R =0.92). The P-wave velocity anisotropy ranges between 9.93 and 11.14% for anisotropic samples. The microscopy analysis of thin sections for studied samples shows that open and closed microcracks are the origin of P-wave velocity anisotropy in Hamra Quartzites reservoir. The P-wave velocity anisotropy of samples is proportional to the width of parallel microcracks.</description><subject>Anisotropy</subject><subject>Coefficients</subject><subject>Cores</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Grain size</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Microcracks</subject><subject>Microscopy</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>Original Paper</subject><subject>P waves</subject><subject>Particle size</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Quartzite</subject><subject>Reservoirs</subject><subject>Room temperature</subject><subject>Sciences of the Universe</subject><subject>Thermal conductivity</subject><subject>Velocity</subject><subject>Wave velocity</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPAk2A1X5q26XEMdcJEBT1KSNtEM7pmJm1l_npTK_PmJcmXPO9LeBA6BXIJhGRXHmgCWUQojcIcVr6HJsDTNMqSmO_vzgCH6Mj7FSEpJxmfoNfH6FP2CveqtqVpt1g2xtvW2c0WmwYv5NpJ_NRJ136ZVnnslFeut8ZdhDfvDb5X3kvbVdiaGmuj6mrIzeo35Yw8Rgda1l6d_O5T9HJz_TxfRMuH27v5bBmVkHMeFbpIuY41UzotpYaCFYxozdMYdJHkMaNalUBiXlVU53kGZcYrlTBKdFklOYmn6HzsfZe12Dizlm4rrDRiMVuK4Y4wyBkQ2kNgz0Z24-xHp3wrVrZzTfieoGlCSU4YGyg6UqWz3juld7VAxKBcjMpFkC1-lAseQvEY8gFugoG_6n9S3y8Hg6A</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Zerrouki, Ahmed Ali</creator><creator>Geraud, Yves</creator><creator>Dobbi, Abdelmadjid</creator><creator>Diraisson, Marc</creator><creator>Baddari, Kamel</creator><creator>Lebtahi, Hamid</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2352-3045</orcidid></search><sort><creationdate>202205</creationdate><title>P-wave velocity anisotropy in Hamra Quartzites reservoir, Hassi Messaoud oil field in Algeria</title><author>Zerrouki, Ahmed Ali ; Geraud, Yves ; Dobbi, Abdelmadjid ; Diraisson, Marc ; Baddari, Kamel ; Lebtahi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1988-bfb68f3f4ef6caf1b4b40ff8631fb59342fec1038dd2f9971c78de5420fcd5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Coefficients</topic><topic>Cores</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Grain size</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Microcracks</topic><topic>Microscopy</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>Original Paper</topic><topic>P waves</topic><topic>Particle size</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Quartzite</topic><topic>Reservoirs</topic><topic>Room temperature</topic><topic>Sciences of the Universe</topic><topic>Thermal conductivity</topic><topic>Velocity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerrouki, Ahmed Ali</creatorcontrib><creatorcontrib>Geraud, Yves</creatorcontrib><creatorcontrib>Dobbi, Abdelmadjid</creatorcontrib><creatorcontrib>Diraisson, Marc</creatorcontrib><creatorcontrib>Baddari, Kamel</creatorcontrib><creatorcontrib>Lebtahi, Hamid</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zerrouki, Ahmed Ali</au><au>Geraud, Yves</au><au>Dobbi, Abdelmadjid</au><au>Diraisson, Marc</au><au>Baddari, Kamel</au><au>Lebtahi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P-wave velocity anisotropy in Hamra Quartzites reservoir, Hassi Messaoud oil field in Algeria</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2022-05</date><risdate>2022</risdate><volume>15</volume><issue>9</issue><artnum>800</artnum><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>The P-wave velocity and physical parameters were measured for core samples taken from Hamra Quartzites reservoir in Hassi Messaoud oil field (Algeria). The Pundit Lab tool was used to measure the P-wave velocity and the optical scanning technology was utilized for thermal conductivity. The permeability and porosity are also executed for cylindrical samples; these measures are taken under room temperature and ambient pressure. The physical and petrophysical measurements were carried out in order to search relationships between P-wave velocity anisotropy, thermal conductivity, grain size, density, P-wave velocity, thermal conductivity anisotropy, and porosity for all samples after their classification in uncemented and cemented sets. The origin of P-wave velocity anisotropy basing on thin section of samples and using microscopy analysis is also investigated. The obtained results show good correlation coefficients (R) between P-wave velocity anisotropy, grain size, P-wave velocity, and thermal conductivity in cemented set. The highest correlation coefficient is found between P-wave velocity anisotropy and thermal conductivity in cemented set ( R =0.92). The P-wave velocity anisotropy ranges between 9.93 and 11.14% for anisotropic samples. The microscopy analysis of thin sections for studied samples shows that open and closed microcracks are the origin of P-wave velocity anisotropy in Hamra Quartzites reservoir. The P-wave velocity anisotropy of samples is proportional to the width of parallel microcracks.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12517-022-10022-8</doi><orcidid>https://orcid.org/0000-0002-2352-3045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-7511
ispartof Arabian journal of geosciences, 2022-05, Vol.15 (9), Article 800
issn 1866-7511
1866-7538
language eng
recordid cdi_hal_primary_oai_HAL_hal_04194102v1
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Coefficients
Cores
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth science
Earth Sciences
Grain size
Heat conductivity
Heat transfer
Microcracks
Microscopy
Oil and gas fields
Oil fields
Original Paper
P waves
Particle size
Permeability
Physical properties
Porosity
Pressure
Quartzite
Reservoirs
Room temperature
Sciences of the Universe
Thermal conductivity
Velocity
Wave velocity
title P-wave velocity anisotropy in Hamra Quartzites reservoir, Hassi Messaoud oil field in Algeria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P-wave%20velocity%20anisotropy%20in%20Hamra%20Quartzites%20reservoir,%20Hassi%20Messaoud%20oil%20field%20in%20Algeria&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Zerrouki,%20Ahmed%20Ali&rft.date=2022-05&rft.volume=15&rft.issue=9&rft.artnum=800&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-022-10022-8&rft_dat=%3Cproquest_hal_p%3E2652090441%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652090441&rft_id=info:pmid/&rfr_iscdi=true