Sliding and merging of strongly sheared droplets
A mathematical and numerical framework is proposed to compute the displacement and merging dynamics of sliding droplets under the action of a constant shear exerted by a gas flow. An augmented formulation is implemented to model surface tension including the full curvature of the free surface. A set...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-10, Vol.972, Article A40 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 972 |
creator | Ruyer-Quil, C. Bresch, D. Gisclon, M. Richard, G.L. Kessar, M. Cellier, N. |
description | A mathematical and numerical framework is proposed to compute the displacement and merging dynamics of sliding droplets under the action of a constant shear exerted by a gas flow. An augmented formulation is implemented to model surface tension including the full curvature of the free surface. A set of shallow-water evolution equations is obtained for the film thickness, the averaged velocity, an additional quantity (with dimension of a velocity) taking into account the capillary effects and a tensor called enstrophy. The enstrophy accounts for the deviation of the velocity profile from a constant velocity distribution. The formulation is consistent with the long-wave expansion of the basic equations with a conservative part and source terms including the effect of viscosity, in the form of a viscous friction and the effect of the shear stress. The model is hyperbolic with generalised diffusion terms due to capillarity. Finally, our model is completed with a disjoining pressure formulation that is able to account for the hysteresis of the static contact angle. In this formulation, the advancing or receding nature of the contact line is assessed by the accumulation or reduction of mass of the droplet at the contact line. Simulations of sliding water droplets are performed with periodic boundary conditions in a domain of limited size. Hysteresis of the static contact angle causes a slowdown of the drops and a delay in the sequence of coalescence of the drops. |
doi_str_mv | 10.1017/jfm.2023.726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04193284v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_726</cupid><sourcerecordid>2873257816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-eae858de43500eb17150103d8dcf0438f82bd5fc01aee1e2490ef3e8086879a3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZv_oCAJ8HUmd0kuzmWolYoeLD3ZZudTVPyUXdTof_ehBa9eJpheN6X4WHsHmGGgPJ555oZBy5mkmcXbIJJlscyS9JLNgHgPEbkcM1uQtgBoIBcThh81pWt2jIyrY0a8uW4dy4Kve_asj5GYUvGk42s7_Y19eGWXTlTB7o7zylbv76sF8t49fH2vpiv4kII7GMypFJlKREpAG1QYgoIwipbOEiEcopvbOoKQEOExJMcyAlSoDIlcyOm7PFUuzW13vuqMf6oO1Pp5XylxxskmAuukm8-sA8ndu-7rwOFXu-6g2-H7zRXUvBUKswG6ulEFb4LwZP7rUXQoz496NOjPj3oG_DZGTfNxle2pL_WfwM_dRJv0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873257816</pqid></control><display><type>article</type><title>Sliding and merging of strongly sheared droplets</title><source>Cambridge University Press Journals Complete</source><creator>Ruyer-Quil, C. ; Bresch, D. ; Gisclon, M. ; Richard, G.L. ; Kessar, M. ; Cellier, N.</creator><creatorcontrib>Ruyer-Quil, C. ; Bresch, D. ; Gisclon, M. ; Richard, G.L. ; Kessar, M. ; Cellier, N.</creatorcontrib><description>A mathematical and numerical framework is proposed to compute the displacement and merging dynamics of sliding droplets under the action of a constant shear exerted by a gas flow. An augmented formulation is implemented to model surface tension including the full curvature of the free surface. A set of shallow-water evolution equations is obtained for the film thickness, the averaged velocity, an additional quantity (with dimension of a velocity) taking into account the capillary effects and a tensor called enstrophy. The enstrophy accounts for the deviation of the velocity profile from a constant velocity distribution. The formulation is consistent with the long-wave expansion of the basic equations with a conservative part and source terms including the effect of viscosity, in the form of a viscous friction and the effect of the shear stress. The model is hyperbolic with generalised diffusion terms due to capillarity. Finally, our model is completed with a disjoining pressure formulation that is able to account for the hysteresis of the static contact angle. In this formulation, the advancing or receding nature of the contact line is assessed by the accumulation or reduction of mass of the droplet at the contact line. Simulations of sliding water droplets are performed with periodic boundary conditions in a domain of limited size. Hysteresis of the static contact angle causes a slowdown of the drops and a delay in the sequence of coalescence of the drops.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.726</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Boundary conditions ; Capillarity ; Coalescence ; Contact angle ; Droplets ; Enstrophy ; Film thickness ; Fluid mechanics ; Free surfaces ; Gas flow ; Hysteresis ; JFM Papers ; Mathematical models ; Mathematical Physics ; Mechanics ; Physics ; Reynolds number ; Shallow water ; Shear stress ; Sliding ; Slumping ; Surface tension ; Tensors ; Velocity ; Velocity distribution ; Velocity profiles ; Viscosity ; Water drops</subject><ispartof>Journal of fluid mechanics, 2023-10, Vol.972, Article A40</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-eae858de43500eb17150103d8dcf0438f82bd5fc01aee1e2490ef3e8086879a3</cites><orcidid>0000-0002-7717-5015 ; 0009-0004-4512-7774 ; 0000-0002-3759-3546 ; 0000-0001-8572-7468 ; 0000-0002-2936-7856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023007267/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04193284$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruyer-Quil, C.</creatorcontrib><creatorcontrib>Bresch, D.</creatorcontrib><creatorcontrib>Gisclon, M.</creatorcontrib><creatorcontrib>Richard, G.L.</creatorcontrib><creatorcontrib>Kessar, M.</creatorcontrib><creatorcontrib>Cellier, N.</creatorcontrib><title>Sliding and merging of strongly sheared droplets</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A mathematical and numerical framework is proposed to compute the displacement and merging dynamics of sliding droplets under the action of a constant shear exerted by a gas flow. An augmented formulation is implemented to model surface tension including the full curvature of the free surface. A set of shallow-water evolution equations is obtained for the film thickness, the averaged velocity, an additional quantity (with dimension of a velocity) taking into account the capillary effects and a tensor called enstrophy. The enstrophy accounts for the deviation of the velocity profile from a constant velocity distribution. The formulation is consistent with the long-wave expansion of the basic equations with a conservative part and source terms including the effect of viscosity, in the form of a viscous friction and the effect of the shear stress. The model is hyperbolic with generalised diffusion terms due to capillarity. Finally, our model is completed with a disjoining pressure formulation that is able to account for the hysteresis of the static contact angle. In this formulation, the advancing or receding nature of the contact line is assessed by the accumulation or reduction of mass of the droplet at the contact line. Simulations of sliding water droplets are performed with periodic boundary conditions in a domain of limited size. Hysteresis of the static contact angle causes a slowdown of the drops and a delay in the sequence of coalescence of the drops.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Capillarity</subject><subject>Coalescence</subject><subject>Contact angle</subject><subject>Droplets</subject><subject>Enstrophy</subject><subject>Film thickness</subject><subject>Fluid mechanics</subject><subject>Free surfaces</subject><subject>Gas flow</subject><subject>Hysteresis</subject><subject>JFM Papers</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Shallow water</subject><subject>Shear stress</subject><subject>Sliding</subject><subject>Slumping</subject><subject>Surface tension</subject><subject>Tensors</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity profiles</subject><subject>Viscosity</subject><subject>Water drops</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQhhdRsFZv_oCAJ8HUmd0kuzmWolYoeLD3ZZudTVPyUXdTof_ehBa9eJpheN6X4WHsHmGGgPJ555oZBy5mkmcXbIJJlscyS9JLNgHgPEbkcM1uQtgBoIBcThh81pWt2jIyrY0a8uW4dy4Kve_asj5GYUvGk42s7_Y19eGWXTlTB7o7zylbv76sF8t49fH2vpiv4kII7GMypFJlKREpAG1QYgoIwipbOEiEcopvbOoKQEOExJMcyAlSoDIlcyOm7PFUuzW13vuqMf6oO1Pp5XylxxskmAuukm8-sA8ndu-7rwOFXu-6g2-H7zRXUvBUKswG6ulEFb4LwZP7rUXQoz496NOjPj3oG_DZGTfNxle2pL_WfwM_dRJv0w</recordid><startdate>20231006</startdate><enddate>20231006</enddate><creator>Ruyer-Quil, C.</creator><creator>Bresch, D.</creator><creator>Gisclon, M.</creator><creator>Richard, G.L.</creator><creator>Kessar, M.</creator><creator>Cellier, N.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7717-5015</orcidid><orcidid>https://orcid.org/0009-0004-4512-7774</orcidid><orcidid>https://orcid.org/0000-0002-3759-3546</orcidid><orcidid>https://orcid.org/0000-0001-8572-7468</orcidid><orcidid>https://orcid.org/0000-0002-2936-7856</orcidid></search><sort><creationdate>20231006</creationdate><title>Sliding and merging of strongly sheared droplets</title><author>Ruyer-Quil, C. ; Bresch, D. ; Gisclon, M. ; Richard, G.L. ; Kessar, M. ; Cellier, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-eae858de43500eb17150103d8dcf0438f82bd5fc01aee1e2490ef3e8086879a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Capillarity</topic><topic>Coalescence</topic><topic>Contact angle</topic><topic>Droplets</topic><topic>Enstrophy</topic><topic>Film thickness</topic><topic>Fluid mechanics</topic><topic>Free surfaces</topic><topic>Gas flow</topic><topic>Hysteresis</topic><topic>JFM Papers</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Shallow water</topic><topic>Shear stress</topic><topic>Sliding</topic><topic>Slumping</topic><topic>Surface tension</topic><topic>Tensors</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity profiles</topic><topic>Viscosity</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruyer-Quil, C.</creatorcontrib><creatorcontrib>Bresch, D.</creatorcontrib><creatorcontrib>Gisclon, M.</creatorcontrib><creatorcontrib>Richard, G.L.</creatorcontrib><creatorcontrib>Kessar, M.</creatorcontrib><creatorcontrib>Cellier, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruyer-Quil, C.</au><au>Bresch, D.</au><au>Gisclon, M.</au><au>Richard, G.L.</au><au>Kessar, M.</au><au>Cellier, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding and merging of strongly sheared droplets</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-10-06</date><risdate>2023</risdate><volume>972</volume><artnum>A40</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A mathematical and numerical framework is proposed to compute the displacement and merging dynamics of sliding droplets under the action of a constant shear exerted by a gas flow. An augmented formulation is implemented to model surface tension including the full curvature of the free surface. A set of shallow-water evolution equations is obtained for the film thickness, the averaged velocity, an additional quantity (with dimension of a velocity) taking into account the capillary effects and a tensor called enstrophy. The enstrophy accounts for the deviation of the velocity profile from a constant velocity distribution. The formulation is consistent with the long-wave expansion of the basic equations with a conservative part and source terms including the effect of viscosity, in the form of a viscous friction and the effect of the shear stress. The model is hyperbolic with generalised diffusion terms due to capillarity. Finally, our model is completed with a disjoining pressure formulation that is able to account for the hysteresis of the static contact angle. In this formulation, the advancing or receding nature of the contact line is assessed by the accumulation or reduction of mass of the droplet at the contact line. Simulations of sliding water droplets are performed with periodic boundary conditions in a domain of limited size. Hysteresis of the static contact angle causes a slowdown of the drops and a delay in the sequence of coalescence of the drops.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.726</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7717-5015</orcidid><orcidid>https://orcid.org/0009-0004-4512-7774</orcidid><orcidid>https://orcid.org/0000-0002-3759-3546</orcidid><orcidid>https://orcid.org/0000-0001-8572-7468</orcidid><orcidid>https://orcid.org/0000-0002-2936-7856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-10, Vol.972, Article A40 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04193284v2 |
source | Cambridge University Press Journals Complete |
subjects | Approximation Boundary conditions Capillarity Coalescence Contact angle Droplets Enstrophy Film thickness Fluid mechanics Free surfaces Gas flow Hysteresis JFM Papers Mathematical models Mathematical Physics Mechanics Physics Reynolds number Shallow water Shear stress Sliding Slumping Surface tension Tensors Velocity Velocity distribution Velocity profiles Viscosity Water drops |
title | Sliding and merging of strongly sheared droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20and%20merging%20of%20strongly%20sheared%20droplets&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ruyer-Quil,%20C.&rft.date=2023-10-06&rft.volume=972&rft.artnum=A40&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.726&rft_dat=%3Cproquest_hal_p%3E2873257816%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873257816&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_726&rfr_iscdi=true |