Efficient spatio-temporal feature clustering for large event-based datasets
Event-based cameras encode changes in a visual scene with high temporal precision and low power consumption, generating millions of events per second in the process. Current event-based processing algorithms do not scale well in terms of runtime and computational resources when applied to a large am...
Gespeichert in:
Veröffentlicht in: | Neuromorphic computing and engineering 2022-12, Vol.2 (4), p.44004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 44004 |
container_title | Neuromorphic computing and engineering |
container_volume | 2 |
creator | Oubari, Omar Exarchakis, Georgios Lenz, Gregor Benosman, Ryad Ieng, Sio-Hoi |
description | Event-based cameras encode changes in a visual scene with high temporal precision and low power consumption, generating millions of events per second in the process. Current event-based processing algorithms do not scale well in terms of runtime and computational resources when applied to a large amount of data. This problem is further exacerbated by the development of high spatial resolution vision sensors. We introduce a fast and computationally efficient clustering algorithm that is particularly designed for dealing with large event-based datasets. The approach is based on the expectation-maximization (EM) algorithm and relies on a stochastic approximation of the E-step over a truncated space to reduce the computational burden and speed up the learning process. We evaluate the quality, complexity, and stability of the clustering algorithm on a variety of large event-based datasets, and then validate our approach with a classification task. The proposed algorithm is significantly faster than standard k-means and reduces computational demands by two to three orders of magnitude while being more stable, interpretable, and close to the state of the art in terms of classification accuracy. |
doi_str_mv | 10.1088/2634-4386/ac970d |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04191950v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04191950v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-fe2b8a595cd26eb83074ee1e27b876bf4206118c26919dc08a626a829a68c1cc3</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOObuHnsSBOuSNE3T4xjTiQUveg6v6cvs6NqSZAP_e1sqw4N4-h4f3-_x3kfILaOPjCq15DIRsUiUXILJM1pdkNnZuvw1X5OF93tKKc8yxmQ6I68ba2tTYxsi30Oouzjgoe8cNJFFCEeHkWmOPqCr211kOxc14HYY4WlA4hI8VlEFYdDgb8iVhcbj4kfn5ONp877exsXb88t6VcQmUVmILfJSQZqnpuISS5XQTCAy5FmpMllawalkTBkuc5ZXhiqQXILiOUhlmDHJnNxPez-h0b2rD-C-dAe13q4KPXpUsAFN6YkNWTpljeu8d2jPAKN67E6P5eixHD11NyAPE1J3vd53R9cOz_wXv_sj3hrUXIvhFEGp0H1lk2-iDHx_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient spatio-temporal feature clustering for large event-based datasets</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oubari, Omar ; Exarchakis, Georgios ; Lenz, Gregor ; Benosman, Ryad ; Ieng, Sio-Hoi</creator><creatorcontrib>Oubari, Omar ; Exarchakis, Georgios ; Lenz, Gregor ; Benosman, Ryad ; Ieng, Sio-Hoi</creatorcontrib><description>Event-based cameras encode changes in a visual scene with high temporal precision and low power consumption, generating millions of events per second in the process. Current event-based processing algorithms do not scale well in terms of runtime and computational resources when applied to a large amount of data. This problem is further exacerbated by the development of high spatial resolution vision sensors. We introduce a fast and computationally efficient clustering algorithm that is particularly designed for dealing with large event-based datasets. The approach is based on the expectation-maximization (EM) algorithm and relies on a stochastic approximation of the E-step over a truncated space to reduce the computational burden and speed up the learning process. We evaluate the quality, complexity, and stability of the clustering algorithm on a variety of large event-based datasets, and then validate our approach with a classification task. The proposed algorithm is significantly faster than standard k-means and reduces computational demands by two to three orders of magnitude while being more stable, interpretable, and close to the state of the art in terms of classification accuracy.</description><identifier>ISSN: 2634-4386</identifier><identifier>EISSN: 2634-4386</identifier><identifier>DOI: 10.1088/2634-4386/ac970d</identifier><identifier>CODEN: NCEECN</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>asynchronous vision ; clusterings ; Computer Science ; Computer Vision and Pattern Recognition ; event-based processing ; feature extraction ; Gaussian mixture model</subject><ispartof>Neuromorphic computing and engineering, 2022-12, Vol.2 (4), p.44004</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-fe2b8a595cd26eb83074ee1e27b876bf4206118c26919dc08a626a829a68c1cc3</citedby><cites>FETCH-LOGICAL-c387t-fe2b8a595cd26eb83074ee1e27b876bf4206118c26919dc08a626a829a68c1cc3</cites><orcidid>0000-0003-2517-5782 ; 0000-0002-0030-6574 ; 0000-0003-0619-3555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2634-4386/ac970d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,27924,27925,38890,53867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04191950$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oubari, Omar</creatorcontrib><creatorcontrib>Exarchakis, Georgios</creatorcontrib><creatorcontrib>Lenz, Gregor</creatorcontrib><creatorcontrib>Benosman, Ryad</creatorcontrib><creatorcontrib>Ieng, Sio-Hoi</creatorcontrib><title>Efficient spatio-temporal feature clustering for large event-based datasets</title><title>Neuromorphic computing and engineering</title><addtitle>NCE</addtitle><addtitle>Neuromorph. Comput. Eng</addtitle><description>Event-based cameras encode changes in a visual scene with high temporal precision and low power consumption, generating millions of events per second in the process. Current event-based processing algorithms do not scale well in terms of runtime and computational resources when applied to a large amount of data. This problem is further exacerbated by the development of high spatial resolution vision sensors. We introduce a fast and computationally efficient clustering algorithm that is particularly designed for dealing with large event-based datasets. The approach is based on the expectation-maximization (EM) algorithm and relies on a stochastic approximation of the E-step over a truncated space to reduce the computational burden and speed up the learning process. We evaluate the quality, complexity, and stability of the clustering algorithm on a variety of large event-based datasets, and then validate our approach with a classification task. The proposed algorithm is significantly faster than standard k-means and reduces computational demands by two to three orders of magnitude while being more stable, interpretable, and close to the state of the art in terms of classification accuracy.</description><subject>asynchronous vision</subject><subject>clusterings</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>event-based processing</subject><subject>feature extraction</subject><subject>Gaussian mixture model</subject><issn>2634-4386</issn><issn>2634-4386</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kMFLwzAUxoMoOObuHnsSBOuSNE3T4xjTiQUveg6v6cvs6NqSZAP_e1sqw4N4-h4f3-_x3kfILaOPjCq15DIRsUiUXILJM1pdkNnZuvw1X5OF93tKKc8yxmQ6I68ba2tTYxsi30Oouzjgoe8cNJFFCEeHkWmOPqCr211kOxc14HYY4WlA4hI8VlEFYdDgb8iVhcbj4kfn5ONp877exsXb88t6VcQmUVmILfJSQZqnpuISS5XQTCAy5FmpMllawalkTBkuc5ZXhiqQXILiOUhlmDHJnNxPez-h0b2rD-C-dAe13q4KPXpUsAFN6YkNWTpljeu8d2jPAKN67E6P5eixHD11NyAPE1J3vd53R9cOz_wXv_sj3hrUXIvhFEGp0H1lk2-iDHx_</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Oubari, Omar</creator><creator>Exarchakis, Georgios</creator><creator>Lenz, Gregor</creator><creator>Benosman, Ryad</creator><creator>Ieng, Sio-Hoi</creator><general>IOP Publishing</general><general>IOPScience</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2517-5782</orcidid><orcidid>https://orcid.org/0000-0002-0030-6574</orcidid><orcidid>https://orcid.org/0000-0003-0619-3555</orcidid></search><sort><creationdate>20221201</creationdate><title>Efficient spatio-temporal feature clustering for large event-based datasets</title><author>Oubari, Omar ; Exarchakis, Georgios ; Lenz, Gregor ; Benosman, Ryad ; Ieng, Sio-Hoi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-fe2b8a595cd26eb83074ee1e27b876bf4206118c26919dc08a626a829a68c1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asynchronous vision</topic><topic>clusterings</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>event-based processing</topic><topic>feature extraction</topic><topic>Gaussian mixture model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oubari, Omar</creatorcontrib><creatorcontrib>Exarchakis, Georgios</creatorcontrib><creatorcontrib>Lenz, Gregor</creatorcontrib><creatorcontrib>Benosman, Ryad</creatorcontrib><creatorcontrib>Ieng, Sio-Hoi</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Neuromorphic computing and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oubari, Omar</au><au>Exarchakis, Georgios</au><au>Lenz, Gregor</au><au>Benosman, Ryad</au><au>Ieng, Sio-Hoi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient spatio-temporal feature clustering for large event-based datasets</atitle><jtitle>Neuromorphic computing and engineering</jtitle><stitle>NCE</stitle><addtitle>Neuromorph. Comput. Eng</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>2</volume><issue>4</issue><spage>44004</spage><pages>44004-</pages><issn>2634-4386</issn><eissn>2634-4386</eissn><coden>NCEECN</coden><abstract>Event-based cameras encode changes in a visual scene with high temporal precision and low power consumption, generating millions of events per second in the process. Current event-based processing algorithms do not scale well in terms of runtime and computational resources when applied to a large amount of data. This problem is further exacerbated by the development of high spatial resolution vision sensors. We introduce a fast and computationally efficient clustering algorithm that is particularly designed for dealing with large event-based datasets. The approach is based on the expectation-maximization (EM) algorithm and relies on a stochastic approximation of the E-step over a truncated space to reduce the computational burden and speed up the learning process. We evaluate the quality, complexity, and stability of the clustering algorithm on a variety of large event-based datasets, and then validate our approach with a classification task. The proposed algorithm is significantly faster than standard k-means and reduces computational demands by two to three orders of magnitude while being more stable, interpretable, and close to the state of the art in terms of classification accuracy.</abstract><pub>IOP Publishing</pub><doi>10.1088/2634-4386/ac970d</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2517-5782</orcidid><orcidid>https://orcid.org/0000-0002-0030-6574</orcidid><orcidid>https://orcid.org/0000-0003-0619-3555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2634-4386 |
ispartof | Neuromorphic computing and engineering, 2022-12, Vol.2 (4), p.44004 |
issn | 2634-4386 2634-4386 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04191950v1 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals |
subjects | asynchronous vision clusterings Computer Science Computer Vision and Pattern Recognition event-based processing feature extraction Gaussian mixture model |
title | Efficient spatio-temporal feature clustering for large event-based datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20spatio-temporal%20feature%20clustering%20for%20large%20event-based%20datasets&rft.jtitle=Neuromorphic%20computing%20and%20engineering&rft.au=Oubari,%20Omar&rft.date=2022-12-01&rft.volume=2&rft.issue=4&rft.spage=44004&rft.pages=44004-&rft.issn=2634-4386&rft.eissn=2634-4386&rft.coden=NCEECN&rft_id=info:doi/10.1088/2634-4386/ac970d&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04191950v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |