Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models
The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the v...
Gespeichert in:
Veröffentlicht in: | Environmental modeling & assessment 2024-06, Vol.29 (3), p.621-640 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 640 |
---|---|
container_issue | 3 |
container_start_page | 621 |
container_title | Environmental modeling & assessment |
container_volume | 29 |
creator | Guridi, Ignacio Chassagne, Romain Pryet, Alexandre Atteia, Olivier |
description | The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%. |
doi_str_mv | 10.1007/s10666-023-09924-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04191490v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062782325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-3a40ff7014e3ca888249d0d8ce79405b35773340bae83ee03af6b023a7bb35203</originalsourceid><addsrcrecordid>eNp9kElPxDAMhSsEEusf4BSJE4eCs7Rpj2hYpWETyzXKtC4EOsmQpKD59wSK4MbJlv29J_tl2S6FAwogDwOFsixzYDyHumYiX65kG7SQPGd1KVdTLxjkDFi5nm2G8AKQeCg2su7BNuijNjYuye2gbTSdaXQ0zhLXkYmzUc-N1RFbcudMTx5dP8yRfJj4TI4RF-QKB6_7VOKH86-BaNuSG4-taaJ5R3LpWuzDdrbW6T7gzk_dyh5OT-4n5_n0-uxicjTNGw4i5lwL6DoJVCBvdFVVTNQttFWDshZQzHghJecCZhorjghcd-UsPa3lLO0Y8K1sf_R91r1aeDPXfqmcNur8aKq-ZiBoTUUN7zSxeyO78O5twBDVixu8TecpDiWTFeOsSBQbqca7EDx2v7YU1Ff2asxepTPUd_ZqmUR8FIUE2yf0f9b_qD4BsMGHLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062782325</pqid></control><display><type>article</type><title>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guridi, Ignacio ; Chassagne, Romain ; Pryet, Alexandre ; Atteia, Olivier</creator><creatorcontrib>Guridi, Ignacio ; Chassagne, Romain ; Pryet, Alexandre ; Atteia, Olivier</creatorcontrib><description>The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.</description><identifier>ISSN: 1420-2026</identifier><identifier>EISSN: 1573-2967</identifier><identifier>DOI: 10.1007/s10666-023-09924-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Artificial neural networks ; Contamination ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Environment ; Industrial pollution ; Industrial sites ; Interpolation ; Machine learning ; Math. Appl. in Environmental Science ; Mathematical Modeling and Industrial Mathematics ; Neural networks ; Operations Research/Decision Theory ; Prediction models ; Root-mean-square errors ; Sciences of the Universe ; Soil contamination ; Soil pollution ; Uncertainty</subject><ispartof>Environmental modeling & assessment, 2024-06, Vol.29 (3), p.621-640</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-3a40ff7014e3ca888249d0d8ce79405b35773340bae83ee03af6b023a7bb35203</cites><orcidid>0000-0001-5870-6098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10666-023-09924-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10666-023-09924-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-04191490$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guridi, Ignacio</creatorcontrib><creatorcontrib>Chassagne, Romain</creatorcontrib><creatorcontrib>Pryet, Alexandre</creatorcontrib><creatorcontrib>Atteia, Olivier</creatorcontrib><title>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</title><title>Environmental modeling & assessment</title><addtitle>Environ Model Assess</addtitle><description>The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.</description><subject>Applications of Mathematics</subject><subject>Artificial neural networks</subject><subject>Contamination</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Industrial pollution</subject><subject>Industrial sites</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Neural networks</subject><subject>Operations Research/Decision Theory</subject><subject>Prediction models</subject><subject>Root-mean-square errors</subject><subject>Sciences of the Universe</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Uncertainty</subject><issn>1420-2026</issn><issn>1573-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kElPxDAMhSsEEusf4BSJE4eCs7Rpj2hYpWETyzXKtC4EOsmQpKD59wSK4MbJlv29J_tl2S6FAwogDwOFsixzYDyHumYiX65kG7SQPGd1KVdTLxjkDFi5nm2G8AKQeCg2su7BNuijNjYuye2gbTSdaXQ0zhLXkYmzUc-N1RFbcudMTx5dP8yRfJj4TI4RF-QKB6_7VOKH86-BaNuSG4-taaJ5R3LpWuzDdrbW6T7gzk_dyh5OT-4n5_n0-uxicjTNGw4i5lwL6DoJVCBvdFVVTNQttFWDshZQzHghJecCZhorjghcd-UsPa3lLO0Y8K1sf_R91r1aeDPXfqmcNur8aKq-ZiBoTUUN7zSxeyO78O5twBDVixu8TecpDiWTFeOsSBQbqca7EDx2v7YU1Ff2asxepTPUd_ZqmUR8FIUE2yf0f9b_qD4BsMGHLg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Guridi, Ignacio</creator><creator>Chassagne, Romain</creator><creator>Pryet, Alexandre</creator><creator>Atteia, Olivier</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5870-6098</orcidid></search><sort><creationdate>20240601</creationdate><title>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</title><author>Guridi, Ignacio ; Chassagne, Romain ; Pryet, Alexandre ; Atteia, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-3a40ff7014e3ca888249d0d8ce79405b35773340bae83ee03af6b023a7bb35203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial neural networks</topic><topic>Contamination</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Industrial pollution</topic><topic>Industrial sites</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Neural networks</topic><topic>Operations Research/Decision Theory</topic><topic>Prediction models</topic><topic>Root-mean-square errors</topic><topic>Sciences of the Universe</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guridi, Ignacio</creatorcontrib><creatorcontrib>Chassagne, Romain</creatorcontrib><creatorcontrib>Pryet, Alexandre</creatorcontrib><creatorcontrib>Atteia, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental modeling & assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guridi, Ignacio</au><au>Chassagne, Romain</au><au>Pryet, Alexandre</au><au>Atteia, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</atitle><jtitle>Environmental modeling & assessment</jtitle><stitle>Environ Model Assess</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>3</issue><spage>621</spage><epage>640</epage><pages>621-640</pages><issn>1420-2026</issn><eissn>1573-2967</eissn><abstract>The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10666-023-09924-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5870-6098</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-2026 |
ispartof | Environmental modeling & assessment, 2024-06, Vol.29 (3), p.621-640 |
issn | 1420-2026 1573-2967 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04191490v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Artificial neural networks Contamination Deep learning Earth and Environmental Science Earth Sciences Environment Industrial pollution Industrial sites Interpolation Machine learning Math. Appl. in Environmental Science Mathematical Modeling and Industrial Mathematics Neural networks Operations Research/Decision Theory Prediction models Root-mean-square errors Sciences of the Universe Soil contamination Soil pollution Uncertainty |
title | Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Quantification%20of%20Contaminated%20Soil%20Volume%20with%20Deep%20Neural%20Networks%20and%20Predictive%20Models&rft.jtitle=Environmental%20modeling%20&%20assessment&rft.au=Guridi,%20Ignacio&rft.date=2024-06-01&rft.volume=29&rft.issue=3&rft.spage=621&rft.epage=640&rft.pages=621-640&rft.issn=1420-2026&rft.eissn=1573-2967&rft_id=info:doi/10.1007/s10666-023-09924-y&rft_dat=%3Cproquest_hal_p%3E3062782325%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062782325&rft_id=info:pmid/&rfr_iscdi=true |