Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models

The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modeling & assessment 2024-06, Vol.29 (3), p.621-640
Hauptverfasser: Guridi, Ignacio, Chassagne, Romain, Pryet, Alexandre, Atteia, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 3
container_start_page 621
container_title Environmental modeling & assessment
container_volume 29
creator Guridi, Ignacio
Chassagne, Romain
Pryet, Alexandre
Atteia, Olivier
description The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.
doi_str_mv 10.1007/s10666-023-09924-y
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04191490v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062782325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-3a40ff7014e3ca888249d0d8ce79405b35773340bae83ee03af6b023a7bb35203</originalsourceid><addsrcrecordid>eNp9kElPxDAMhSsEEusf4BSJE4eCs7Rpj2hYpWETyzXKtC4EOsmQpKD59wSK4MbJlv29J_tl2S6FAwogDwOFsixzYDyHumYiX65kG7SQPGd1KVdTLxjkDFi5nm2G8AKQeCg2su7BNuijNjYuye2gbTSdaXQ0zhLXkYmzUc-N1RFbcudMTx5dP8yRfJj4TI4RF-QKB6_7VOKH86-BaNuSG4-taaJ5R3LpWuzDdrbW6T7gzk_dyh5OT-4n5_n0-uxicjTNGw4i5lwL6DoJVCBvdFVVTNQttFWDshZQzHghJecCZhorjghcd-UsPa3lLO0Y8K1sf_R91r1aeDPXfqmcNur8aKq-ZiBoTUUN7zSxeyO78O5twBDVixu8TecpDiWTFeOsSBQbqca7EDx2v7YU1Ff2asxepTPUd_ZqmUR8FIUE2yf0f9b_qD4BsMGHLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062782325</pqid></control><display><type>article</type><title>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guridi, Ignacio ; Chassagne, Romain ; Pryet, Alexandre ; Atteia, Olivier</creator><creatorcontrib>Guridi, Ignacio ; Chassagne, Romain ; Pryet, Alexandre ; Atteia, Olivier</creatorcontrib><description>The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.</description><identifier>ISSN: 1420-2026</identifier><identifier>EISSN: 1573-2967</identifier><identifier>DOI: 10.1007/s10666-023-09924-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Artificial neural networks ; Contamination ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Environment ; Industrial pollution ; Industrial sites ; Interpolation ; Machine learning ; Math. Appl. in Environmental Science ; Mathematical Modeling and Industrial Mathematics ; Neural networks ; Operations Research/Decision Theory ; Prediction models ; Root-mean-square errors ; Sciences of the Universe ; Soil contamination ; Soil pollution ; Uncertainty</subject><ispartof>Environmental modeling &amp; assessment, 2024-06, Vol.29 (3), p.621-640</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-3a40ff7014e3ca888249d0d8ce79405b35773340bae83ee03af6b023a7bb35203</cites><orcidid>0000-0001-5870-6098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10666-023-09924-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10666-023-09924-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-04191490$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guridi, Ignacio</creatorcontrib><creatorcontrib>Chassagne, Romain</creatorcontrib><creatorcontrib>Pryet, Alexandre</creatorcontrib><creatorcontrib>Atteia, Olivier</creatorcontrib><title>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</title><title>Environmental modeling &amp; assessment</title><addtitle>Environ Model Assess</addtitle><description>The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.</description><subject>Applications of Mathematics</subject><subject>Artificial neural networks</subject><subject>Contamination</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Industrial pollution</subject><subject>Industrial sites</subject><subject>Interpolation</subject><subject>Machine learning</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Neural networks</subject><subject>Operations Research/Decision Theory</subject><subject>Prediction models</subject><subject>Root-mean-square errors</subject><subject>Sciences of the Universe</subject><subject>Soil contamination</subject><subject>Soil pollution</subject><subject>Uncertainty</subject><issn>1420-2026</issn><issn>1573-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kElPxDAMhSsEEusf4BSJE4eCs7Rpj2hYpWETyzXKtC4EOsmQpKD59wSK4MbJlv29J_tl2S6FAwogDwOFsixzYDyHumYiX65kG7SQPGd1KVdTLxjkDFi5nm2G8AKQeCg2su7BNuijNjYuye2gbTSdaXQ0zhLXkYmzUc-N1RFbcudMTx5dP8yRfJj4TI4RF-QKB6_7VOKH86-BaNuSG4-taaJ5R3LpWuzDdrbW6T7gzk_dyh5OT-4n5_n0-uxicjTNGw4i5lwL6DoJVCBvdFVVTNQttFWDshZQzHghJecCZhorjghcd-UsPa3lLO0Y8K1sf_R91r1aeDPXfqmcNur8aKq-ZiBoTUUN7zSxeyO78O5twBDVixu8TecpDiWTFeOsSBQbqca7EDx2v7YU1Ff2asxepTPUd_ZqmUR8FIUE2yf0f9b_qD4BsMGHLg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Guridi, Ignacio</creator><creator>Chassagne, Romain</creator><creator>Pryet, Alexandre</creator><creator>Atteia, Olivier</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5870-6098</orcidid></search><sort><creationdate>20240601</creationdate><title>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</title><author>Guridi, Ignacio ; Chassagne, Romain ; Pryet, Alexandre ; Atteia, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-3a40ff7014e3ca888249d0d8ce79405b35773340bae83ee03af6b023a7bb35203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Artificial neural networks</topic><topic>Contamination</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Industrial pollution</topic><topic>Industrial sites</topic><topic>Interpolation</topic><topic>Machine learning</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Neural networks</topic><topic>Operations Research/Decision Theory</topic><topic>Prediction models</topic><topic>Root-mean-square errors</topic><topic>Sciences of the Universe</topic><topic>Soil contamination</topic><topic>Soil pollution</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guridi, Ignacio</creatorcontrib><creatorcontrib>Chassagne, Romain</creatorcontrib><creatorcontrib>Pryet, Alexandre</creatorcontrib><creatorcontrib>Atteia, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental modeling &amp; assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guridi, Ignacio</au><au>Chassagne, Romain</au><au>Pryet, Alexandre</au><au>Atteia, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models</atitle><jtitle>Environmental modeling &amp; assessment</jtitle><stitle>Environ Model Assess</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>3</issue><spage>621</spage><epage>640</epage><pages>621-640</pages><issn>1420-2026</issn><eissn>1573-2967</eissn><abstract>The estimation of the soil volume exceeding a contamination threshold over decommissioned industrial sites is critical for the design of remediation strategies. In practice, the volume calculation is mostly based on preliminary sampling surveys and the use of interpolation methods. However, if the volume is not estimated correctly, this can lead to environmental and economic risks. Geostatistical-oriented methodologies have been developed to better assess the volume using uncertainty ranges. In our study, we propose a methodology entitled “Evol” to better estimate the volume and reduce the uncertainty ranges with a combination of classic non-parametrical interpolation techniques and deep learning. Evol consists of generating a synthetic model from a real polluted site, extracting descriptive variables (features) from multiple sample sets, and evaluating the error in the volume calculation. A Deep Neural Network model is then trained with the features to estimate the volume and uncertainty range for any sample set. Our methodology demonstrated high accuracy in error estimation, as evidenced by a low RMSE of 0.008 across most sample sets. Additionally, the confidence volume intervals produced by our approach were narrower than those generated by classic techniques, resulting in interval size reductions of up to 89%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10666-023-09924-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5870-6098</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-2026
ispartof Environmental modeling & assessment, 2024-06, Vol.29 (3), p.621-640
issn 1420-2026
1573-2967
language eng
recordid cdi_hal_primary_oai_HAL_hal_04191490v1
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Artificial neural networks
Contamination
Deep learning
Earth and Environmental Science
Earth Sciences
Environment
Industrial pollution
Industrial sites
Interpolation
Machine learning
Math. Appl. in Environmental Science
Mathematical Modeling and Industrial Mathematics
Neural networks
Operations Research/Decision Theory
Prediction models
Root-mean-square errors
Sciences of the Universe
Soil contamination
Soil pollution
Uncertainty
title Uncertainty Quantification of Contaminated Soil Volume with Deep Neural Networks and Predictive Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Quantification%20of%20Contaminated%20Soil%20Volume%20with%20Deep%20Neural%20Networks%20and%20Predictive%20Models&rft.jtitle=Environmental%20modeling%20&%20assessment&rft.au=Guridi,%20Ignacio&rft.date=2024-06-01&rft.volume=29&rft.issue=3&rft.spage=621&rft.epage=640&rft.pages=621-640&rft.issn=1420-2026&rft.eissn=1573-2967&rft_id=info:doi/10.1007/s10666-023-09924-y&rft_dat=%3Cproquest_hal_p%3E3062782325%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062782325&rft_id=info:pmid/&rfr_iscdi=true