Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching
Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching pr...
Gespeichert in:
Veröffentlicht in: | Sports medicine (Auckland) 2017-10, Vol.47 (10), p.1925-1929 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1929 |
---|---|
container_issue | 10 |
container_start_page | 1925 |
container_title | Sports medicine (Auckland) |
container_volume | 47 |
creator | Nordez, Antoine Gross, Raphaël Andrade, Ricardo Le Sant, Guillaume Freitas, Sandro Ellis, Richard McNair, Peter J. Hug, François |
description | Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching protocols, this condition is not always met sufficiently to trigger adaptation within the muscle-tendon unit. For example, there is experimental evidence that both acute and chronic stretching interventions may increase the maximal range of motion in the absence of changes in the passive torque-angle curve. We contend that these results are partly explained by the influence of non-muscular structures that contribute only marginally to the passive torque. The potential candidates are the nervous system and fasciae, which would play an important role in the perception of the stretch and in the limitation of the range of motion of the maximal joints. At least in part, this may explain the lack of a significant effect of some chronic stretching interventions to change passive muscle tension. |
doi_str_mv | 10.1007/s40279-017-0703-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04191421v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874443358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-f2cdaf66c98f0d5b6e87e94a9d5fa391656a7864149f7775dbc2e2d0e1bcd90c3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EokPhAdggS2xgkXKvY8fxshoVCpoBCeja8jhOJ1UmHvyD6NvXUUqRKrGydfWd43N9CHmNcIYA8kPkwKSqAGUFEupKPCErxDJhUIunZAWIrMKGsxPyIsYbABAtZ8_JCWuZEKpuV-Tqq5-qbY42jybQHylkm3Jwka7NRDfDYUg07R3dmj_DwYz0ix-mRL-b6dpR39OtT4OfaJfDMF3Papfsvlxfkme9GaN7dX-ekquPFz_Xl9Xm26fP6_NNZQWKVPXMdqZvGqvaHjqxa1wrneJGdaI3tcJGNEa2DUeueiml6HaWOdaBw53tFNj6lLxffPdm1MdQIoZb7c2gL883ep4BR4Wc4W8s7LuFPQb_K7uY9GGI1o2jmZzPUWMrOed1LdqCvn2E3vgcprKJZiWUkMi5LBQulA0-xuD6hwQIeu5HL_3o0o-e-9GiaN7cO-fdwXUPir-FFIAtQDzOf-rCv6f_73oHEJqZJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165571447</pqid></control><display><type>article</type><title>Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching</title><source>Springer Online Journals Complete</source><creator>Nordez, Antoine ; Gross, Raphaël ; Andrade, Ricardo ; Le Sant, Guillaume ; Freitas, Sandro ; Ellis, Richard ; McNair, Peter J. ; Hug, François</creator><creatorcontrib>Nordez, Antoine ; Gross, Raphaël ; Andrade, Ricardo ; Le Sant, Guillaume ; Freitas, Sandro ; Ellis, Richard ; McNair, Peter J. ; Hug, François</creatorcontrib><description>Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching protocols, this condition is not always met sufficiently to trigger adaptation within the muscle-tendon unit. For example, there is experimental evidence that both acute and chronic stretching interventions may increase the maximal range of motion in the absence of changes in the passive torque-angle curve. We contend that these results are partly explained by the influence of non-muscular structures that contribute only marginally to the passive torque. The potential candidates are the nervous system and fasciae, which would play an important role in the perception of the stretch and in the limitation of the range of motion of the maximal joints. At least in part, this may explain the lack of a significant effect of some chronic stretching interventions to change passive muscle tension.</description><identifier>ISSN: 0112-1642</identifier><identifier>EISSN: 1179-2035</identifier><identifier>DOI: 10.1007/s40279-017-0703-5</identifier><identifier>PMID: 28255938</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ankle ; Clinical medicine ; Current Opinion ; Extensibility ; Life Sciences ; Medicine ; Medicine & Public Health ; Muscles ; Nervous system ; Range of motion ; Sports Medicine ; Tension ; Ultrasonic imaging</subject><ispartof>Sports medicine (Auckland), 2017-10, Vol.47 (10), p.1925-1929</ispartof><rights>Springer International Publishing Switzerland 2017</rights><rights>Copyright Springer Science & Business Media Oct 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-f2cdaf66c98f0d5b6e87e94a9d5fa391656a7864149f7775dbc2e2d0e1bcd90c3</citedby><cites>FETCH-LOGICAL-c515t-f2cdaf66c98f0d5b6e87e94a9d5fa391656a7864149f7775dbc2e2d0e1bcd90c3</cites><orcidid>0000-0002-7276-4793 ; 0000-0001-7614-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40279-017-0703-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40279-017-0703-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28255938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04191421$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordez, Antoine</creatorcontrib><creatorcontrib>Gross, Raphaël</creatorcontrib><creatorcontrib>Andrade, Ricardo</creatorcontrib><creatorcontrib>Le Sant, Guillaume</creatorcontrib><creatorcontrib>Freitas, Sandro</creatorcontrib><creatorcontrib>Ellis, Richard</creatorcontrib><creatorcontrib>McNair, Peter J.</creatorcontrib><creatorcontrib>Hug, François</creatorcontrib><title>Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching</title><title>Sports medicine (Auckland)</title><addtitle>Sports Med</addtitle><addtitle>Sports Med</addtitle><description>Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching protocols, this condition is not always met sufficiently to trigger adaptation within the muscle-tendon unit. For example, there is experimental evidence that both acute and chronic stretching interventions may increase the maximal range of motion in the absence of changes in the passive torque-angle curve. We contend that these results are partly explained by the influence of non-muscular structures that contribute only marginally to the passive torque. The potential candidates are the nervous system and fasciae, which would play an important role in the perception of the stretch and in the limitation of the range of motion of the maximal joints. At least in part, this may explain the lack of a significant effect of some chronic stretching interventions to change passive muscle tension.</description><subject>Ankle</subject><subject>Clinical medicine</subject><subject>Current Opinion</subject><subject>Extensibility</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Muscles</subject><subject>Nervous system</subject><subject>Range of motion</subject><subject>Sports Medicine</subject><subject>Tension</subject><subject>Ultrasonic imaging</subject><issn>0112-1642</issn><issn>1179-2035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kc1u1DAUhS0EokPhAdggS2xgkXKvY8fxshoVCpoBCeja8jhOJ1UmHvyD6NvXUUqRKrGydfWd43N9CHmNcIYA8kPkwKSqAGUFEupKPCErxDJhUIunZAWIrMKGsxPyIsYbABAtZ8_JCWuZEKpuV-Tqq5-qbY42jybQHylkm3Jwka7NRDfDYUg07R3dmj_DwYz0ix-mRL-b6dpR39OtT4OfaJfDMF3Papfsvlxfkme9GaN7dX-ekquPFz_Xl9Xm26fP6_NNZQWKVPXMdqZvGqvaHjqxa1wrneJGdaI3tcJGNEa2DUeueiml6HaWOdaBw53tFNj6lLxffPdm1MdQIoZb7c2gL883ep4BR4Wc4W8s7LuFPQb_K7uY9GGI1o2jmZzPUWMrOed1LdqCvn2E3vgcprKJZiWUkMi5LBQulA0-xuD6hwQIeu5HL_3o0o-e-9GiaN7cO-fdwXUPir-FFIAtQDzOf-rCv6f_73oHEJqZJw</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Nordez, Antoine</creator><creator>Gross, Raphaël</creator><creator>Andrade, Ricardo</creator><creator>Le Sant, Guillaume</creator><creator>Freitas, Sandro</creator><creator>Ellis, Richard</creator><creator>McNair, Peter J.</creator><creator>Hug, François</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7276-4793</orcidid><orcidid>https://orcid.org/0000-0001-7614-6389</orcidid></search><sort><creationdate>20171001</creationdate><title>Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching</title><author>Nordez, Antoine ; Gross, Raphaël ; Andrade, Ricardo ; Le Sant, Guillaume ; Freitas, Sandro ; Ellis, Richard ; McNair, Peter J. ; Hug, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-f2cdaf66c98f0d5b6e87e94a9d5fa391656a7864149f7775dbc2e2d0e1bcd90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ankle</topic><topic>Clinical medicine</topic><topic>Current Opinion</topic><topic>Extensibility</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Muscles</topic><topic>Nervous system</topic><topic>Range of motion</topic><topic>Sports Medicine</topic><topic>Tension</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordez, Antoine</creatorcontrib><creatorcontrib>Gross, Raphaël</creatorcontrib><creatorcontrib>Andrade, Ricardo</creatorcontrib><creatorcontrib>Le Sant, Guillaume</creatorcontrib><creatorcontrib>Freitas, Sandro</creatorcontrib><creatorcontrib>Ellis, Richard</creatorcontrib><creatorcontrib>McNair, Peter J.</creatorcontrib><creatorcontrib>Hug, François</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Sports medicine (Auckland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordez, Antoine</au><au>Gross, Raphaël</au><au>Andrade, Ricardo</au><au>Le Sant, Guillaume</au><au>Freitas, Sandro</au><au>Ellis, Richard</au><au>McNair, Peter J.</au><au>Hug, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching</atitle><jtitle>Sports medicine (Auckland)</jtitle><stitle>Sports Med</stitle><addtitle>Sports Med</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>1925</spage><epage>1929</epage><pages>1925-1929</pages><issn>0112-1642</issn><eissn>1179-2035</eissn><abstract>Stretching is widely used in sport training and clinical practice with the aim of increasing muscle-tendon extensibility and joint range of motion. The underlying assumption is that extensibility increases as a result of increased passive tension applied to muscle-tendon units. In some stretching protocols, this condition is not always met sufficiently to trigger adaptation within the muscle-tendon unit. For example, there is experimental evidence that both acute and chronic stretching interventions may increase the maximal range of motion in the absence of changes in the passive torque-angle curve. We contend that these results are partly explained by the influence of non-muscular structures that contribute only marginally to the passive torque. The potential candidates are the nervous system and fasciae, which would play an important role in the perception of the stretch and in the limitation of the range of motion of the maximal joints. At least in part, this may explain the lack of a significant effect of some chronic stretching interventions to change passive muscle tension.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>28255938</pmid><doi>10.1007/s40279-017-0703-5</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7276-4793</orcidid><orcidid>https://orcid.org/0000-0001-7614-6389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0112-1642 |
ispartof | Sports medicine (Auckland), 2017-10, Vol.47 (10), p.1925-1929 |
issn | 0112-1642 1179-2035 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04191421v1 |
source | Springer Online Journals Complete |
subjects | Ankle Clinical medicine Current Opinion Extensibility Life Sciences Medicine Medicine & Public Health Muscles Nervous system Range of motion Sports Medicine Tension Ultrasonic imaging |
title | Non-Muscular Structures Can Limit the Maximal Joint Range of Motion during Stretching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Muscular%20Structures%20Can%20Limit%20the%20Maximal%20Joint%20Range%20of%20Motion%20during%20Stretching&rft.jtitle=Sports%20medicine%20(Auckland)&rft.au=Nordez,%20Antoine&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=1925&rft.epage=1929&rft.pages=1925-1929&rft.issn=0112-1642&rft.eissn=1179-2035&rft_id=info:doi/10.1007/s40279-017-0703-5&rft_dat=%3Cproquest_hal_p%3E1874443358%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165571447&rft_id=info:pmid/28255938&rfr_iscdi=true |