Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations

In this work, we provide a holistic picture about the relationship between atomic structure, mechanical properties, and thermal stability of ZrCuAlx thin film metallic glasses (TFMGs) varying the Al content from 0 to 12 at. %, carrying out a broad characterization involving experiments and ab initio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2023-10, Vol.258, p.119226, Article 119226
Hauptverfasser: Poltronieri, C., Brognara, A., Bignoli, F., Evertz, S., Djemia, P., Faurie, D., Challali, F., Li, C.H., Belliard, L., Dehm, G., Best, J.P., Ghidelli, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119226
container_title Acta materialia
container_volume 258
creator Poltronieri, C.
Brognara, A.
Bignoli, F.
Evertz, S.
Djemia, P.
Faurie, D.
Challali, F.
Li, C.H.
Belliard, L.
Dehm, G.
Best, J.P.
Ghidelli, M.
description In this work, we provide a holistic picture about the relationship between atomic structure, mechanical properties, and thermal stability of ZrCuAlx thin film metallic glasses (TFMGs) varying the Al content from 0 to 12 at. %, carrying out a broad characterization involving experiments and ab initio molecular dynamic simulations (AIMD). We show that the addition of Al resulted in a change of average interatomic distances by ~10 pm with the formation of shorter bonds (Al-Zr and Al-Cu), influencing the mechanical response (shear/elastic moduli and hardness) which increases by ~15% for 12 at.% Al. Moreover, tensile tests on polymer substrate revealed a maximum value for the crack initiation strain of 2.1% for ZrCuAl9, while the strain-to-failure rapidly decreases at higher Al contents. The observed reduction in damage tolerance is correlated to a transition in atomic configuration. Specifically, a maximum in density of full and defective icosahedral cluster population is observed at 9 at.% Al, inducing a more shear-resistant behavior to the material. Thermal stability is investigated by high energy and conventional x-ray diffraction and electrical resistivity measurements as a function of the temperature. Glass transition (Tg) and crystallization (Tx) temperature increase by Al addition reaching 450 and 500 ◦C, respectively for ZrCuAl12. The increase in thermal stability is related to the reduction in atomic mobility due to the formation of shorter chemical bonds, inhibiting atomic reconfiguration during crystallization. In conclusion, we provide guidelines to the design of compositional-tailored ZrCuAlx TFMGs with tuned mechanical properties and thermal stability with potential impact on industrial applications.
doi_str_mv 10.1016/j.actamat.2023.119226
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04188534v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04188534v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1d5d62facecf8c36641ec38ff5452d59bf2e3dac1c54340882b36bfc8406dff83</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxT2ARCl8BCSvDAn-G1y2qioUqYgFFhbr4tjUlZNUtovaia9OqlRMJ7179-7ph9AdJSUltHrYlmAytJBLRhgvKZ0xVl2gCeVyVlRCiit0ndKWEMoeBZmg3zdrNtB5AwHvYr-zMXubMHQNzhsb20FOGWoffD7i3uGvuNjPw2FY-g47H1rc2gwheIO_A6Rk0xNeHoYY39ouj0HOx5SLXfSd8btg8fDL7ANk33fpBl06CMnenucUfT4vPxarYv3-8rqYrwvDucgFbWRTMQfGGqcMrypBreHKOSkka-SsdszyBgw1UnBBlGI1r2pnlCBV45ziU3Q_5m4g6KFKC_Goe_B6NV_rk0YEVUpy8UMHrxy9JvYpRev-DyjRJ8p6q8-U9YmyHinzPxXbeD0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations</title><source>Elsevier ScienceDirect Journals</source><creator>Poltronieri, C. ; Brognara, A. ; Bignoli, F. ; Evertz, S. ; Djemia, P. ; Faurie, D. ; Challali, F. ; Li, C.H. ; Belliard, L. ; Dehm, G. ; Best, J.P. ; Ghidelli, M.</creator><creatorcontrib>Poltronieri, C. ; Brognara, A. ; Bignoli, F. ; Evertz, S. ; Djemia, P. ; Faurie, D. ; Challali, F. ; Li, C.H. ; Belliard, L. ; Dehm, G. ; Best, J.P. ; Ghidelli, M.</creatorcontrib><description>In this work, we provide a holistic picture about the relationship between atomic structure, mechanical properties, and thermal stability of ZrCuAlx thin film metallic glasses (TFMGs) varying the Al content from 0 to 12 at. %, carrying out a broad characterization involving experiments and ab initio molecular dynamic simulations (AIMD). We show that the addition of Al resulted in a change of average interatomic distances by ~10 pm with the formation of shorter bonds (Al-Zr and Al-Cu), influencing the mechanical response (shear/elastic moduli and hardness) which increases by ~15% for 12 at.% Al. Moreover, tensile tests on polymer substrate revealed a maximum value for the crack initiation strain of 2.1% for ZrCuAl9, while the strain-to-failure rapidly decreases at higher Al contents. The observed reduction in damage tolerance is correlated to a transition in atomic configuration. Specifically, a maximum in density of full and defective icosahedral cluster population is observed at 9 at.% Al, inducing a more shear-resistant behavior to the material. Thermal stability is investigated by high energy and conventional x-ray diffraction and electrical resistivity measurements as a function of the temperature. Glass transition (Tg) and crystallization (Tx) temperature increase by Al addition reaching 450 and 500 ◦C, respectively for ZrCuAl12. The increase in thermal stability is related to the reduction in atomic mobility due to the formation of shorter chemical bonds, inhibiting atomic reconfiguration during crystallization. In conclusion, we provide guidelines to the design of compositional-tailored ZrCuAlx TFMGs with tuned mechanical properties and thermal stability with potential impact on industrial applications.</description><identifier>ISSN: 1359-6454</identifier><identifier>DOI: 10.1016/j.actamat.2023.119226</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Condensed Matter ; Engineering Sciences ; Materials ; Materials Science ; Mechanics ; Micro and nanotechnologies ; Microelectronics ; Physics</subject><ispartof>Acta materialia, 2023-10, Vol.258, p.119226, Article 119226</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1d5d62facecf8c36641ec38ff5452d59bf2e3dac1c54340882b36bfc8406dff83</citedby><cites>FETCH-LOGICAL-c334t-1d5d62facecf8c36641ec38ff5452d59bf2e3dac1c54340882b36bfc8406dff83</cites><orcidid>0000-0001-6308-4895 ; 0000-0003-4991-5597 ; 0000-0003-3256-4129 ; 0000-0001-6057-9040 ; 0000-0003-1601-8267 ; 0000-0003-3707-7899 ; 0000-0003-4728-2052 ; 0000-0003-4313-8731 ; 0009-0006-2844-3147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04188534$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Poltronieri, C.</creatorcontrib><creatorcontrib>Brognara, A.</creatorcontrib><creatorcontrib>Bignoli, F.</creatorcontrib><creatorcontrib>Evertz, S.</creatorcontrib><creatorcontrib>Djemia, P.</creatorcontrib><creatorcontrib>Faurie, D.</creatorcontrib><creatorcontrib>Challali, F.</creatorcontrib><creatorcontrib>Li, C.H.</creatorcontrib><creatorcontrib>Belliard, L.</creatorcontrib><creatorcontrib>Dehm, G.</creatorcontrib><creatorcontrib>Best, J.P.</creatorcontrib><creatorcontrib>Ghidelli, M.</creatorcontrib><title>Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations</title><title>Acta materialia</title><description>In this work, we provide a holistic picture about the relationship between atomic structure, mechanical properties, and thermal stability of ZrCuAlx thin film metallic glasses (TFMGs) varying the Al content from 0 to 12 at. %, carrying out a broad characterization involving experiments and ab initio molecular dynamic simulations (AIMD). We show that the addition of Al resulted in a change of average interatomic distances by ~10 pm with the formation of shorter bonds (Al-Zr and Al-Cu), influencing the mechanical response (shear/elastic moduli and hardness) which increases by ~15% for 12 at.% Al. Moreover, tensile tests on polymer substrate revealed a maximum value for the crack initiation strain of 2.1% for ZrCuAl9, while the strain-to-failure rapidly decreases at higher Al contents. The observed reduction in damage tolerance is correlated to a transition in atomic configuration. Specifically, a maximum in density of full and defective icosahedral cluster population is observed at 9 at.% Al, inducing a more shear-resistant behavior to the material. Thermal stability is investigated by high energy and conventional x-ray diffraction and electrical resistivity measurements as a function of the temperature. Glass transition (Tg) and crystallization (Tx) temperature increase by Al addition reaching 450 and 500 ◦C, respectively for ZrCuAl12. The increase in thermal stability is related to the reduction in atomic mobility due to the formation of shorter chemical bonds, inhibiting atomic reconfiguration during crystallization. In conclusion, we provide guidelines to the design of compositional-tailored ZrCuAlx TFMGs with tuned mechanical properties and thermal stability with potential impact on industrial applications.</description><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Mechanics</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Physics</subject><issn>1359-6454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAQxT2ARCl8BCSvDAn-G1y2qioUqYgFFhbr4tjUlZNUtovaia9OqlRMJ7179-7ph9AdJSUltHrYlmAytJBLRhgvKZ0xVl2gCeVyVlRCiit0ndKWEMoeBZmg3zdrNtB5AwHvYr-zMXubMHQNzhsb20FOGWoffD7i3uGvuNjPw2FY-g47H1rc2gwheIO_A6Rk0xNeHoYY39ouj0HOx5SLXfSd8btg8fDL7ANk33fpBl06CMnenucUfT4vPxarYv3-8rqYrwvDucgFbWRTMQfGGqcMrypBreHKOSkka-SsdszyBgw1UnBBlGI1r2pnlCBV45ziU3Q_5m4g6KFKC_Goe_B6NV_rk0YEVUpy8UMHrxy9JvYpRev-DyjRJ8p6q8-U9YmyHinzPxXbeD0</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Poltronieri, C.</creator><creator>Brognara, A.</creator><creator>Bignoli, F.</creator><creator>Evertz, S.</creator><creator>Djemia, P.</creator><creator>Faurie, D.</creator><creator>Challali, F.</creator><creator>Li, C.H.</creator><creator>Belliard, L.</creator><creator>Dehm, G.</creator><creator>Best, J.P.</creator><creator>Ghidelli, M.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6308-4895</orcidid><orcidid>https://orcid.org/0000-0003-4991-5597</orcidid><orcidid>https://orcid.org/0000-0003-3256-4129</orcidid><orcidid>https://orcid.org/0000-0001-6057-9040</orcidid><orcidid>https://orcid.org/0000-0003-1601-8267</orcidid><orcidid>https://orcid.org/0000-0003-3707-7899</orcidid><orcidid>https://orcid.org/0000-0003-4728-2052</orcidid><orcidid>https://orcid.org/0000-0003-4313-8731</orcidid><orcidid>https://orcid.org/0009-0006-2844-3147</orcidid></search><sort><creationdate>202310</creationdate><title>Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations</title><author>Poltronieri, C. ; Brognara, A. ; Bignoli, F. ; Evertz, S. ; Djemia, P. ; Faurie, D. ; Challali, F. ; Li, C.H. ; Belliard, L. ; Dehm, G. ; Best, J.P. ; Ghidelli, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1d5d62facecf8c36641ec38ff5452d59bf2e3dac1c54340882b36bfc8406dff83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Mechanics</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poltronieri, C.</creatorcontrib><creatorcontrib>Brognara, A.</creatorcontrib><creatorcontrib>Bignoli, F.</creatorcontrib><creatorcontrib>Evertz, S.</creatorcontrib><creatorcontrib>Djemia, P.</creatorcontrib><creatorcontrib>Faurie, D.</creatorcontrib><creatorcontrib>Challali, F.</creatorcontrib><creatorcontrib>Li, C.H.</creatorcontrib><creatorcontrib>Belliard, L.</creatorcontrib><creatorcontrib>Dehm, G.</creatorcontrib><creatorcontrib>Best, J.P.</creatorcontrib><creatorcontrib>Ghidelli, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poltronieri, C.</au><au>Brognara, A.</au><au>Bignoli, F.</au><au>Evertz, S.</au><au>Djemia, P.</au><au>Faurie, D.</au><au>Challali, F.</au><au>Li, C.H.</au><au>Belliard, L.</au><au>Dehm, G.</au><au>Best, J.P.</au><au>Ghidelli, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations</atitle><jtitle>Acta materialia</jtitle><date>2023-10</date><risdate>2023</risdate><volume>258</volume><spage>119226</spage><pages>119226-</pages><artnum>119226</artnum><issn>1359-6454</issn><abstract>In this work, we provide a holistic picture about the relationship between atomic structure, mechanical properties, and thermal stability of ZrCuAlx thin film metallic glasses (TFMGs) varying the Al content from 0 to 12 at. %, carrying out a broad characterization involving experiments and ab initio molecular dynamic simulations (AIMD). We show that the addition of Al resulted in a change of average interatomic distances by ~10 pm with the formation of shorter bonds (Al-Zr and Al-Cu), influencing the mechanical response (shear/elastic moduli and hardness) which increases by ~15% for 12 at.% Al. Moreover, tensile tests on polymer substrate revealed a maximum value for the crack initiation strain of 2.1% for ZrCuAl9, while the strain-to-failure rapidly decreases at higher Al contents. The observed reduction in damage tolerance is correlated to a transition in atomic configuration. Specifically, a maximum in density of full and defective icosahedral cluster population is observed at 9 at.% Al, inducing a more shear-resistant behavior to the material. Thermal stability is investigated by high energy and conventional x-ray diffraction and electrical resistivity measurements as a function of the temperature. Glass transition (Tg) and crystallization (Tx) temperature increase by Al addition reaching 450 and 500 ◦C, respectively for ZrCuAl12. The increase in thermal stability is related to the reduction in atomic mobility due to the formation of shorter chemical bonds, inhibiting atomic reconfiguration during crystallization. In conclusion, we provide guidelines to the design of compositional-tailored ZrCuAlx TFMGs with tuned mechanical properties and thermal stability with potential impact on industrial applications.</abstract><pub>Elsevier</pub><doi>10.1016/j.actamat.2023.119226</doi><orcidid>https://orcid.org/0000-0001-6308-4895</orcidid><orcidid>https://orcid.org/0000-0003-4991-5597</orcidid><orcidid>https://orcid.org/0000-0003-3256-4129</orcidid><orcidid>https://orcid.org/0000-0001-6057-9040</orcidid><orcidid>https://orcid.org/0000-0003-1601-8267</orcidid><orcidid>https://orcid.org/0000-0003-3707-7899</orcidid><orcidid>https://orcid.org/0000-0003-4728-2052</orcidid><orcidid>https://orcid.org/0000-0003-4313-8731</orcidid><orcidid>https://orcid.org/0009-0006-2844-3147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2023-10, Vol.258, p.119226, Article 119226
issn 1359-6454
language eng
recordid cdi_hal_primary_oai_HAL_hal_04188534v1
source Elsevier ScienceDirect Journals
subjects Condensed Matter
Engineering Sciences
Materials
Materials Science
Mechanics
Micro and nanotechnologies
Microelectronics
Physics
title Mechanical properties and thermal stability of ZrCuAlx thin film metallic glasses: Experiments and first-principle calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20and%20thermal%20stability%20of%20ZrCuAlx%20thin%20film%20metallic%20glasses:%20Experiments%20and%20first-principle%20calculations&rft.jtitle=Acta%20materialia&rft.au=Poltronieri,%20C.&rft.date=2023-10&rft.volume=258&rft.spage=119226&rft.pages=119226-&rft.artnum=119226&rft.issn=1359-6454&rft_id=info:doi/10.1016/j.actamat.2023.119226&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04188534v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true