Sketched Newton--Raphson
We propose a new globally convergent stochastic second-order method. Our starting point is the development of a new sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F (x) = 0 with F : R p → R m. We then show how to design several stochastic second-order op...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2022-09, Vol.32 (3), p.1555-1583 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1583 |
---|---|
container_issue | 3 |
container_start_page | 1555 |
container_title | SIAM journal on optimization |
container_volume | 32 |
creator | Yuan, Rui Lazaric, Alessandro Gower, Robert M. |
description | We propose a new globally convergent stochastic second-order method. Our starting point is the development of a new sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F (x) = 0 with F : R p → R m. We then show how to design several stochastic second-order optimization methods by rewriting the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model, we derive completely new and scalable stochastic second-order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Furthermore, using a variable splitting trick, we also show that the stochastic Newton method (SNM) is a special case of SNR and use this connection to establish the first global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a variant of the online stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to the classic monotone convergence theory. |
doi_str_mv | 10.1137/21M139788X |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04182653v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04182653v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c195t-234282c73c0232a90caa80dbd54eb809617ae8f9205c8a76f022b4325c57a3f93</originalsourceid><addsrcrecordid>eNpFj81LAzEUxIMoWKsXTx69Woi-97LZvBxLUSusCn6At5DNZtlq7ZbNovjf26VSTzMMvxkYIU4RLhGVuSK8R2UN89ueGCFYLQ2y3R-8JpmTyg7FUUrvAMA255E4e_6IfWhidf4Qv_t2JeWTXzepXR2Lg9ovUzz507F4vbl-mc1l8Xh7N5sWMqDVvdwsElMwKgAp8haC9wxVWekslgw2R-Mj15ZAB_Ymr4GozBTpoI1XtVVjcbHdbfzSrbvFp-9-XOsXbj4t3JBBhky5Vl-4YSdbNnRtSl2sdwUEN_x3___VLxzYSZI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sketched Newton--Raphson</title><source>SIAM Journals</source><creator>Yuan, Rui ; Lazaric, Alessandro ; Gower, Robert M.</creator><creatorcontrib>Yuan, Rui ; Lazaric, Alessandro ; Gower, Robert M.</creatorcontrib><description>We propose a new globally convergent stochastic second-order method. Our starting point is the development of a new sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F (x) = 0 with F : R p → R m. We then show how to design several stochastic second-order optimization methods by rewriting the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model, we derive completely new and scalable stochastic second-order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Furthermore, using a variable splitting trick, we also show that the stochastic Newton method (SNM) is a special case of SNR and use this connection to establish the first global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a variant of the online stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to the classic monotone convergence theory.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/21M139788X</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Numerical Analysis</subject><ispartof>SIAM journal on optimization, 2022-09, Vol.32 (3), p.1555-1583</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c195t-234282c73c0232a90caa80dbd54eb809617ae8f9205c8a76f022b4325c57a3f93</citedby><cites>FETCH-LOGICAL-c195t-234282c73c0232a90caa80dbd54eb809617ae8f9205c8a76f022b4325c57a3f93</cites><orcidid>0000-0002-1768-9639 ; 0000-0002-2268-9780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3170,27903,27904</link.rule.ids><backlink>$$Uhttps://telecom-paris.hal.science/hal-04182653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Rui</creatorcontrib><creatorcontrib>Lazaric, Alessandro</creatorcontrib><creatorcontrib>Gower, Robert M.</creatorcontrib><title>Sketched Newton--Raphson</title><title>SIAM journal on optimization</title><description>We propose a new globally convergent stochastic second-order method. Our starting point is the development of a new sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F (x) = 0 with F : R p → R m. We then show how to design several stochastic second-order optimization methods by rewriting the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model, we derive completely new and scalable stochastic second-order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Furthermore, using a variable splitting trick, we also show that the stochastic Newton method (SNM) is a special case of SNR and use this connection to establish the first global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a variant of the online stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to the classic monotone convergence theory.</description><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFj81LAzEUxIMoWKsXTx69Woi-97LZvBxLUSusCn6At5DNZtlq7ZbNovjf26VSTzMMvxkYIU4RLhGVuSK8R2UN89ueGCFYLQ2y3R-8JpmTyg7FUUrvAMA255E4e_6IfWhidf4Qv_t2JeWTXzepXR2Lg9ovUzz507F4vbl-mc1l8Xh7N5sWMqDVvdwsElMwKgAp8haC9wxVWekslgw2R-Mj15ZAB_Ymr4GozBTpoI1XtVVjcbHdbfzSrbvFp-9-XOsXbj4t3JBBhky5Vl-4YSdbNnRtSl2sdwUEN_x3___VLxzYSZI</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Yuan, Rui</creator><creator>Lazaric, Alessandro</creator><creator>Gower, Robert M.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1768-9639</orcidid><orcidid>https://orcid.org/0000-0002-2268-9780</orcidid></search><sort><creationdate>202209</creationdate><title>Sketched Newton--Raphson</title><author>Yuan, Rui ; Lazaric, Alessandro ; Gower, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c195t-234282c73c0232a90caa80dbd54eb809617ae8f9205c8a76f022b4325c57a3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Rui</creatorcontrib><creatorcontrib>Lazaric, Alessandro</creatorcontrib><creatorcontrib>Gower, Robert M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Rui</au><au>Lazaric, Alessandro</au><au>Gower, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sketched Newton--Raphson</atitle><jtitle>SIAM journal on optimization</jtitle><date>2022-09</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>1555</spage><epage>1583</epage><pages>1555-1583</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>We propose a new globally convergent stochastic second-order method. Our starting point is the development of a new sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F (x) = 0 with F : R p → R m. We then show how to design several stochastic second-order optimization methods by rewriting the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model, we derive completely new and scalable stochastic second-order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Furthermore, using a variable splitting trick, we also show that the stochastic Newton method (SNM) is a special case of SNR and use this connection to establish the first global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a variant of the online stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to the classic monotone convergence theory.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/21M139788X</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-1768-9639</orcidid><orcidid>https://orcid.org/0000-0002-2268-9780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2022-09, Vol.32 (3), p.1555-1583 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04182653v1 |
source | SIAM Journals |
subjects | Mathematics Numerical Analysis |
title | Sketched Newton--Raphson |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sketched%20Newton--Raphson&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Yuan,%20Rui&rft.date=2022-09&rft.volume=32&rft.issue=3&rft.spage=1555&rft.epage=1583&rft.pages=1555-1583&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/21M139788X&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04182653v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |