A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems

A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2024-03, Vol.60 (3), p.1-1
Hauptverfasser: Alayeto, Mayra Hernandez, Meunier, Gerard, Rondot, Loic, Chadebec, Olivier, Guichon, Jean-Michel, Favre, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 60
creator Alayeto, Mayra Hernandez
Meunier, Gerard
Rondot, Loic
Chadebec, Olivier
Guichon, Jean-Michel
Favre, Matthieu
description A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.
doi_str_mv 10.1109/TMAG.2023.3301566
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04180908v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207768</ieee_id><sourcerecordid>2932564522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-93cc75d48cde1930ae0875d292b66b58578a1d50cd03098cad04c544b393e1853</originalsourceid><addsrcrecordid>eNpNkE1rGzEQhkVJoa6bHxDoQdBTDuuMvtbS0Zg4MThpIU7ITWi141RBu9pqdwv991njUHIa3uF5h-Eh5ILBgjEwV_u71c2CAxcLIYCpsvxEZsxIVgCU5ozMAJgujCzlF_K171-nKBWDGXle0X1osHgYsOtC-0KfUhwbpNt2wJfsIt2k3IzRDSG19JAyvU9tDC26TDcBY12sQ_ZjGOg6jV3Emv7KqYrY9N_I54OLPZ6_zzl53Fzv17fF7ufNdr3aFV5wMRRGeL9UtdS-RmYEOAQ9ZW54VZaV0mqpHasV-BoEGO1dDdIrKSthBDKtxJxcnu7-dtF2OTQu_7PJBXu72tnjDiTTYED_ZRP748R2Of0ZsR_saxpzO71nuRFclVJxPlHsRPmc-j7j4f9ZBvYo2x5l26Ns-y576nw_dQIifuA5LJelFm-xi3kt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932564522</pqid></control><display><type>article</type><title>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Alayeto, Mayra Hernandez ; Meunier, Gerard ; Rondot, Loic ; Chadebec, Olivier ; Guichon, Jean-Michel ; Favre, Matthieu</creator><creatorcontrib>Alayeto, Mayra Hernandez ; Meunier, Gerard ; Rondot, Loic ; Chadebec, Olivier ; Guichon, Jean-Michel ; Favre, Matthieu</creatorcontrib><description>A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3301566</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Electric power ; Engineering Sciences ; Equivalent circuit ; facet-shape functions ; Ferromagnetism ; field-circuit coupling ; Finite element analysis ; Finite element method ; Jacobian matrices ; Magnetic circuits ; Magnetic fields ; Magnetic flux ; Magnetostatics ; nonlinear ; time-stepping ; volume integral method</subject><ispartof>IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-93cc75d48cde1930ae0875d292b66b58578a1d50cd03098cad04c544b393e1853</cites><orcidid>0000-0001-6424-1653 ; 0000-0002-4334-1855 ; 0000-0003-4708-5411 ; 0000-0001-9329-3954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10207768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04180908$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alayeto, Mayra Hernandez</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Rondot, Loic</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Favre, Matthieu</creatorcontrib><title>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.</description><subject>Coils</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Equivalent circuit</subject><subject>facet-shape functions</subject><subject>Ferromagnetism</subject><subject>field-circuit coupling</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Jacobian matrices</subject><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetostatics</subject><subject>nonlinear</subject><subject>time-stepping</subject><subject>volume integral method</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rGzEQhkVJoa6bHxDoQdBTDuuMvtbS0Zg4MThpIU7ITWi141RBu9pqdwv991njUHIa3uF5h-Eh5ILBgjEwV_u71c2CAxcLIYCpsvxEZsxIVgCU5ozMAJgujCzlF_K171-nKBWDGXle0X1osHgYsOtC-0KfUhwbpNt2wJfsIt2k3IzRDSG19JAyvU9tDC26TDcBY12sQ_ZjGOg6jV3Emv7KqYrY9N_I54OLPZ6_zzl53Fzv17fF7ufNdr3aFV5wMRRGeL9UtdS-RmYEOAQ9ZW54VZaV0mqpHasV-BoEGO1dDdIrKSthBDKtxJxcnu7-dtF2OTQu_7PJBXu72tnjDiTTYED_ZRP748R2Of0ZsR_saxpzO71nuRFclVJxPlHsRPmc-j7j4f9ZBvYo2x5l26Ns-y576nw_dQIifuA5LJelFm-xi3kt</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Alayeto, Mayra Hernandez</creator><creator>Meunier, Gerard</creator><creator>Rondot, Loic</creator><creator>Chadebec, Olivier</creator><creator>Guichon, Jean-Michel</creator><creator>Favre, Matthieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6424-1653</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0001-9329-3954</orcidid></search><sort><creationdate>20240301</creationdate><title>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</title><author>Alayeto, Mayra Hernandez ; Meunier, Gerard ; Rondot, Loic ; Chadebec, Olivier ; Guichon, Jean-Michel ; Favre, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-93cc75d48cde1930ae0875d292b66b58578a1d50cd03098cad04c544b393e1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Equivalent circuit</topic><topic>facet-shape functions</topic><topic>Ferromagnetism</topic><topic>field-circuit coupling</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Jacobian matrices</topic><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetostatics</topic><topic>nonlinear</topic><topic>time-stepping</topic><topic>volume integral method</topic><toplevel>online_resources</toplevel><creatorcontrib>Alayeto, Mayra Hernandez</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Rondot, Loic</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Favre, Matthieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alayeto, Mayra Hernandez</au><au>Meunier, Gerard</au><au>Rondot, Loic</au><au>Chadebec, Olivier</au><au>Guichon, Jean-Michel</au><au>Favre, Matthieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3301566</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6424-1653</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0001-9329-3954</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1-1
issn 0018-9464
1941-0069
language eng
recordid cdi_hal_primary_oai_HAL_hal_04180908v1
source IEEE Electronic Library (IEL)
subjects Coils
Electric power
Engineering Sciences
Equivalent circuit
facet-shape functions
Ferromagnetism
field-circuit coupling
Finite element analysis
Finite element method
Jacobian matrices
Magnetic circuits
Magnetic fields
Magnetic flux
Magnetostatics
nonlinear
time-stepping
volume integral method
title A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Time-Stepping%20Volume%20Integral%20Formulation%20for%20Nonlinear%20Field-Circuit%20Coupled%20Problems&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Alayeto,%20Mayra%20Hernandez&rft.date=2024-03-01&rft.volume=60&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3301566&rft_dat=%3Cproquest_RIE%3E2932564522%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932564522&rft_id=info:pmid/&rft_ieee_id=10207768&rfr_iscdi=true