A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems
A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2024-03, Vol.60 (3), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 60 |
creator | Alayeto, Mayra Hernandez Meunier, Gerard Rondot, Loic Chadebec, Olivier Guichon, Jean-Michel Favre, Matthieu |
description | A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy. |
doi_str_mv | 10.1109/TMAG.2023.3301566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04180908v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207768</ieee_id><sourcerecordid>2932564522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-93cc75d48cde1930ae0875d292b66b58578a1d50cd03098cad04c544b393e1853</originalsourceid><addsrcrecordid>eNpNkE1rGzEQhkVJoa6bHxDoQdBTDuuMvtbS0Zg4MThpIU7ITWi141RBu9pqdwv991njUHIa3uF5h-Eh5ILBgjEwV_u71c2CAxcLIYCpsvxEZsxIVgCU5ozMAJgujCzlF_K171-nKBWDGXle0X1osHgYsOtC-0KfUhwbpNt2wJfsIt2k3IzRDSG19JAyvU9tDC26TDcBY12sQ_ZjGOg6jV3Emv7KqYrY9N_I54OLPZ6_zzl53Fzv17fF7ufNdr3aFV5wMRRGeL9UtdS-RmYEOAQ9ZW54VZaV0mqpHasV-BoEGO1dDdIrKSthBDKtxJxcnu7-dtF2OTQu_7PJBXu72tnjDiTTYED_ZRP748R2Of0ZsR_saxpzO71nuRFclVJxPlHsRPmc-j7j4f9ZBvYo2x5l26Ns-y576nw_dQIifuA5LJelFm-xi3kt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932564522</pqid></control><display><type>article</type><title>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Alayeto, Mayra Hernandez ; Meunier, Gerard ; Rondot, Loic ; Chadebec, Olivier ; Guichon, Jean-Michel ; Favre, Matthieu</creator><creatorcontrib>Alayeto, Mayra Hernandez ; Meunier, Gerard ; Rondot, Loic ; Chadebec, Olivier ; Guichon, Jean-Michel ; Favre, Matthieu</creatorcontrib><description>A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2023.3301566</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coils ; Electric power ; Engineering Sciences ; Equivalent circuit ; facet-shape functions ; Ferromagnetism ; field-circuit coupling ; Finite element analysis ; Finite element method ; Jacobian matrices ; Magnetic circuits ; Magnetic fields ; Magnetic flux ; Magnetostatics ; nonlinear ; time-stepping ; volume integral method</subject><ispartof>IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-93cc75d48cde1930ae0875d292b66b58578a1d50cd03098cad04c544b393e1853</cites><orcidid>0000-0001-6424-1653 ; 0000-0002-4334-1855 ; 0000-0003-4708-5411 ; 0000-0001-9329-3954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10207768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-04180908$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alayeto, Mayra Hernandez</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Rondot, Loic</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Favre, Matthieu</creatorcontrib><title>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.</description><subject>Coils</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Equivalent circuit</subject><subject>facet-shape functions</subject><subject>Ferromagnetism</subject><subject>field-circuit coupling</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Jacobian matrices</subject><subject>Magnetic circuits</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetostatics</subject><subject>nonlinear</subject><subject>time-stepping</subject><subject>volume integral method</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rGzEQhkVJoa6bHxDoQdBTDuuMvtbS0Zg4MThpIU7ITWi141RBu9pqdwv991njUHIa3uF5h-Eh5ILBgjEwV_u71c2CAxcLIYCpsvxEZsxIVgCU5ozMAJgujCzlF_K171-nKBWDGXle0X1osHgYsOtC-0KfUhwbpNt2wJfsIt2k3IzRDSG19JAyvU9tDC26TDcBY12sQ_ZjGOg6jV3Emv7KqYrY9N_I54OLPZ6_zzl53Fzv17fF7ufNdr3aFV5wMRRGeL9UtdS-RmYEOAQ9ZW54VZaV0mqpHasV-BoEGO1dDdIrKSthBDKtxJxcnu7-dtF2OTQu_7PJBXu72tnjDiTTYED_ZRP748R2Of0ZsR_saxpzO71nuRFclVJxPlHsRPmc-j7j4f9ZBvYo2x5l26Ns-y576nw_dQIifuA5LJelFm-xi3kt</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Alayeto, Mayra Hernandez</creator><creator>Meunier, Gerard</creator><creator>Rondot, Loic</creator><creator>Chadebec, Olivier</creator><creator>Guichon, Jean-Michel</creator><creator>Favre, Matthieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6424-1653</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0001-9329-3954</orcidid></search><sort><creationdate>20240301</creationdate><title>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</title><author>Alayeto, Mayra Hernandez ; Meunier, Gerard ; Rondot, Loic ; Chadebec, Olivier ; Guichon, Jean-Michel ; Favre, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-93cc75d48cde1930ae0875d292b66b58578a1d50cd03098cad04c544b393e1853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coils</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Equivalent circuit</topic><topic>facet-shape functions</topic><topic>Ferromagnetism</topic><topic>field-circuit coupling</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Jacobian matrices</topic><topic>Magnetic circuits</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetostatics</topic><topic>nonlinear</topic><topic>time-stepping</topic><topic>volume integral method</topic><toplevel>online_resources</toplevel><creatorcontrib>Alayeto, Mayra Hernandez</creatorcontrib><creatorcontrib>Meunier, Gerard</creatorcontrib><creatorcontrib>Rondot, Loic</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Favre, Matthieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alayeto, Mayra Hernandez</au><au>Meunier, Gerard</au><au>Rondot, Loic</au><au>Chadebec, Olivier</au><au>Guichon, Jean-Michel</au><au>Favre, Matthieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A B-conforming time-stepping Volume Integral Method (VIM) formulation for nonlinear 3D field-circuit coupled problems is presented in this paper. The advantage of the VIM with respect to the Finite Element Method (FEM) is that only the ferromagnetic regions have to be discretized, thus avoiding to mesh the air. It is an appealing approach given that it avoids numerical errors that can arise from meshing the air. A direct formulation is explained, assembling in a system the magnetic field and the circuit contributions when coils are present. An application to a current transformer is shown, comparing it to the FEM to validate its accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2023.3301566</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6424-1653</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0001-9329-3954</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2024-03, Vol.60 (3), p.1-1 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04180908v1 |
source | IEEE Electronic Library (IEL) |
subjects | Coils Electric power Engineering Sciences Equivalent circuit facet-shape functions Ferromagnetism field-circuit coupling Finite element analysis Finite element method Jacobian matrices Magnetic circuits Magnetic fields Magnetic flux Magnetostatics nonlinear time-stepping volume integral method |
title | A Time-Stepping Volume Integral Formulation for Nonlinear Field-Circuit Coupled Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Time-Stepping%20Volume%20Integral%20Formulation%20for%20Nonlinear%20Field-Circuit%20Coupled%20Problems&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Alayeto,%20Mayra%20Hernandez&rft.date=2024-03-01&rft.volume=60&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2023.3301566&rft_dat=%3Cproquest_RIE%3E2932564522%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932564522&rft_id=info:pmid/&rft_ieee_id=10207768&rfr_iscdi=true |