The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering

Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a promising oxide solid electrolyte for all-solid-state batteries due to its excellent air stability, acceptable electrochemical stability window, and cost-effective precursor materials. However, further improvement in the ionic conductivity performance of oxide solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-08, Vol.15 (33), p.39186-39197
Hauptverfasser: Cretu, Sorina, Bradley, David G., Feng, Li Patrick Wen, Kudu, Omer Ulas, Nguyen, Linh Lan, Nguyen, Tuan Tu, Jamali, Arash, Chotard, Jean-Noel, Seznec, Vincent, Hanna, John V., Demortière, Arnaud, Duchamp, Martial
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39197
container_issue 33
container_start_page 39186
container_title ACS applied materials & interfaces
container_volume 15
creator Cretu, Sorina
Bradley, David G.
Feng, Li Patrick Wen
Kudu, Omer Ulas
Nguyen, Linh Lan
Nguyen, Tuan Tu
Jamali, Arash
Chotard, Jean-Noel
Seznec, Vincent
Hanna, John V.
Demortière, Arnaud
Duchamp, Martial
description Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a promising oxide solid electrolyte for all-solid-state batteries due to its excellent air stability, acceptable electrochemical stability window, and cost-effective precursor materials. However, further improvement in the ionic conductivity performance of oxide solid-state electrolytes is hindered by the presence of grain boundaries and their associated morphologies and composition. These key factors thus represent a major obstacle to the improved design of modern oxide based solid-state electrolytes. This study establishes a correlation between the influence of the grain boundary phases, their 3D morphology, and compositions formed under different sintering conditions on the overall LAGP ionic conductivity. Spark plasma sintering has been employed to sinter oxide solid electrolyte material at different temperatures with high compacity values, whereas a combined potentiostatic electrochemical impedance spectroscopy, 3D FIB-SEM tomography, XRD, and solid-state NMR/materials modeling approach provides an in-depth analysis of the influence of the morphology, structure, and composition of the grain boundary phases that impact the total ionic conductivity. This work establishes the first 3D FIB-SEM tomography analysis of the LAGP morphology and the secondary phases formed in the grain boundaries at the nanoscale level, whereas the associated 31P and 27Al MAS NMR study coupled with materials modeling reveals that the grain boundary material is composed of Li4P2O7 and disordered Li9Al3(P2O7)3(PO4)2 phases. Quantitative 31P MAS NMR measurements demonstrate that optimal ionic conductivity for the LAGP system is achieved for the 680 °C SPS preparation when the disordered Li9Al3(P2O7)3(PO4)2 phase dominates the grain boundary composition with reduced contributions from the highly ordered Li4P2O7 phases, whereas the 27Al MAS NMR data reveal that minimal structural change is experienced by each phase throughout this suite of sintering temperatures.
doi_str_mv 10.1021/acsami.3c03839
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04179871v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848842831</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-24a0d07380b74225456947198c6e59388786061843d9d281921f358e5bf4a8f33</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhkVoSNK01x6Ljk3Brj53tUdj0sTgEoPTsxhrtbFS7cqVtAGf-8e7y7q-9aRB88wzMC9CnyiZU8LoNzAJWjfnhnDFqwt0QyshZopJ9u5cC3GN3qf0SkjBGZFX6JqXUhZcFjfoz_Pe4lV7AJNxaPCqyza-RHAd3uwh2YRDh_OIhM4ZvAxd3Zvs3lw-jvjYWS8eNngbvKvxvbcmx-CP2eIfMJgceLyJ9gDR1nh3xNuh-oU3HlILeOvGZa57-YAuG_DJfjy9t-jn9_vn5eNs_fSwWi7WM-CFyDMmgNSk5IrsSsGYFLKoREkrZQorK65UqQpSUCV4XdVM0YrRhktl5a4RoBrOb9Hd5N2D14foWohHHcDpx8Vaj39E0LJSJX2jA_tlYg8x_O5tyrp1yVjvobOhT5opoZRgio_ofEJNDClF25zdlOgxJD2FpE8hDQOfT-5-19r6jP9LZQC-TsAwqF9DH7vhLP-z_QWMIZoH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848842831</pqid></control><display><type>article</type><title>The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering</title><source>American Chemical Society Journals</source><creator>Cretu, Sorina ; Bradley, David G. ; Feng, Li Patrick Wen ; Kudu, Omer Ulas ; Nguyen, Linh Lan ; Nguyen, Tuan Tu ; Jamali, Arash ; Chotard, Jean-Noel ; Seznec, Vincent ; Hanna, John V. ; Demortière, Arnaud ; Duchamp, Martial</creator><creatorcontrib>Cretu, Sorina ; Bradley, David G. ; Feng, Li Patrick Wen ; Kudu, Omer Ulas ; Nguyen, Linh Lan ; Nguyen, Tuan Tu ; Jamali, Arash ; Chotard, Jean-Noel ; Seznec, Vincent ; Hanna, John V. ; Demortière, Arnaud ; Duchamp, Martial</creatorcontrib><description>Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a promising oxide solid electrolyte for all-solid-state batteries due to its excellent air stability, acceptable electrochemical stability window, and cost-effective precursor materials. However, further improvement in the ionic conductivity performance of oxide solid-state electrolytes is hindered by the presence of grain boundaries and their associated morphologies and composition. These key factors thus represent a major obstacle to the improved design of modern oxide based solid-state electrolytes. This study establishes a correlation between the influence of the grain boundary phases, their 3D morphology, and compositions formed under different sintering conditions on the overall LAGP ionic conductivity. Spark plasma sintering has been employed to sinter oxide solid electrolyte material at different temperatures with high compacity values, whereas a combined potentiostatic electrochemical impedance spectroscopy, 3D FIB-SEM tomography, XRD, and solid-state NMR/materials modeling approach provides an in-depth analysis of the influence of the morphology, structure, and composition of the grain boundary phases that impact the total ionic conductivity. This work establishes the first 3D FIB-SEM tomography analysis of the LAGP morphology and the secondary phases formed in the grain boundaries at the nanoscale level, whereas the associated 31P and 27Al MAS NMR study coupled with materials modeling reveals that the grain boundary material is composed of Li4P2O7 and disordered Li9Al3(P2O7)3(PO4)2 phases. Quantitative 31P MAS NMR measurements demonstrate that optimal ionic conductivity for the LAGP system is achieved for the 680 °C SPS preparation when the disordered Li9Al3(P2O7)3(PO4)2 phase dominates the grain boundary composition with reduced contributions from the highly ordered Li4P2O7 phases, whereas the 27Al MAS NMR data reveal that minimal structural change is experienced by each phase throughout this suite of sintering temperatures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c03839</identifier><identifier>PMID: 37556356</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Energy, Environmental, and Catalysis Applications ; Material chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2023-08, Vol.15 (33), p.39186-39197</ispartof><rights>2023 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-24a0d07380b74225456947198c6e59388786061843d9d281921f358e5bf4a8f33</citedby><cites>FETCH-LOGICAL-a364t-24a0d07380b74225456947198c6e59388786061843d9d281921f358e5bf4a8f33</cites><orcidid>0000-0002-4706-4592 ; 0000-0003-2105-3059 ; 0000-0002-9867-7954 ; 0000-0002-0644-3932 ; 0000-0001-9358-7768 ; 0000-0001-5233-5943 ; 0000-0003-3764-4435 ; 0000-0003-3013-9276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c03839$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c03839$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37556356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-picardie.hal.science/hal-04179871$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cretu, Sorina</creatorcontrib><creatorcontrib>Bradley, David G.</creatorcontrib><creatorcontrib>Feng, Li Patrick Wen</creatorcontrib><creatorcontrib>Kudu, Omer Ulas</creatorcontrib><creatorcontrib>Nguyen, Linh Lan</creatorcontrib><creatorcontrib>Nguyen, Tuan Tu</creatorcontrib><creatorcontrib>Jamali, Arash</creatorcontrib><creatorcontrib>Chotard, Jean-Noel</creatorcontrib><creatorcontrib>Seznec, Vincent</creatorcontrib><creatorcontrib>Hanna, John V.</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Duchamp, Martial</creatorcontrib><title>The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a promising oxide solid electrolyte for all-solid-state batteries due to its excellent air stability, acceptable electrochemical stability window, and cost-effective precursor materials. However, further improvement in the ionic conductivity performance of oxide solid-state electrolytes is hindered by the presence of grain boundaries and their associated morphologies and composition. These key factors thus represent a major obstacle to the improved design of modern oxide based solid-state electrolytes. This study establishes a correlation between the influence of the grain boundary phases, their 3D morphology, and compositions formed under different sintering conditions on the overall LAGP ionic conductivity. Spark plasma sintering has been employed to sinter oxide solid electrolyte material at different temperatures with high compacity values, whereas a combined potentiostatic electrochemical impedance spectroscopy, 3D FIB-SEM tomography, XRD, and solid-state NMR/materials modeling approach provides an in-depth analysis of the influence of the morphology, structure, and composition of the grain boundary phases that impact the total ionic conductivity. This work establishes the first 3D FIB-SEM tomography analysis of the LAGP morphology and the secondary phases formed in the grain boundaries at the nanoscale level, whereas the associated 31P and 27Al MAS NMR study coupled with materials modeling reveals that the grain boundary material is composed of Li4P2O7 and disordered Li9Al3(P2O7)3(PO4)2 phases. Quantitative 31P MAS NMR measurements demonstrate that optimal ionic conductivity for the LAGP system is achieved for the 680 °C SPS preparation when the disordered Li9Al3(P2O7)3(PO4)2 phase dominates the grain boundary composition with reduced contributions from the highly ordered Li4P2O7 phases, whereas the 27Al MAS NMR data reveal that minimal structural change is experienced by each phase throughout this suite of sintering temperatures.</description><subject>Chemical Sciences</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>Material chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rGzEQhkVoSNK01x6Ljk3Brj53tUdj0sTgEoPTsxhrtbFS7cqVtAGf-8e7y7q-9aRB88wzMC9CnyiZU8LoNzAJWjfnhnDFqwt0QyshZopJ9u5cC3GN3qf0SkjBGZFX6JqXUhZcFjfoz_Pe4lV7AJNxaPCqyza-RHAd3uwh2YRDh_OIhM4ZvAxd3Zvs3lw-jvjYWS8eNngbvKvxvbcmx-CP2eIfMJgceLyJ9gDR1nh3xNuh-oU3HlILeOvGZa57-YAuG_DJfjy9t-jn9_vn5eNs_fSwWi7WM-CFyDMmgNSk5IrsSsGYFLKoREkrZQorK65UqQpSUCV4XdVM0YrRhktl5a4RoBrOb9Hd5N2D14foWohHHcDpx8Vaj39E0LJSJX2jA_tlYg8x_O5tyrp1yVjvobOhT5opoZRgio_ofEJNDClF25zdlOgxJD2FpE8hDQOfT-5-19r6jP9LZQC-TsAwqF9DH7vhLP-z_QWMIZoH</recordid><startdate>20230823</startdate><enddate>20230823</enddate><creator>Cretu, Sorina</creator><creator>Bradley, David G.</creator><creator>Feng, Li Patrick Wen</creator><creator>Kudu, Omer Ulas</creator><creator>Nguyen, Linh Lan</creator><creator>Nguyen, Tuan Tu</creator><creator>Jamali, Arash</creator><creator>Chotard, Jean-Noel</creator><creator>Seznec, Vincent</creator><creator>Hanna, John V.</creator><creator>Demortière, Arnaud</creator><creator>Duchamp, Martial</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4706-4592</orcidid><orcidid>https://orcid.org/0000-0003-2105-3059</orcidid><orcidid>https://orcid.org/0000-0002-9867-7954</orcidid><orcidid>https://orcid.org/0000-0002-0644-3932</orcidid><orcidid>https://orcid.org/0000-0001-9358-7768</orcidid><orcidid>https://orcid.org/0000-0001-5233-5943</orcidid><orcidid>https://orcid.org/0000-0003-3764-4435</orcidid><orcidid>https://orcid.org/0000-0003-3013-9276</orcidid></search><sort><creationdate>20230823</creationdate><title>The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering</title><author>Cretu, Sorina ; Bradley, David G. ; Feng, Li Patrick Wen ; Kudu, Omer Ulas ; Nguyen, Linh Lan ; Nguyen, Tuan Tu ; Jamali, Arash ; Chotard, Jean-Noel ; Seznec, Vincent ; Hanna, John V. ; Demortière, Arnaud ; Duchamp, Martial</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-24a0d07380b74225456947198c6e59388786061843d9d281921f358e5bf4a8f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cretu, Sorina</creatorcontrib><creatorcontrib>Bradley, David G.</creatorcontrib><creatorcontrib>Feng, Li Patrick Wen</creatorcontrib><creatorcontrib>Kudu, Omer Ulas</creatorcontrib><creatorcontrib>Nguyen, Linh Lan</creatorcontrib><creatorcontrib>Nguyen, Tuan Tu</creatorcontrib><creatorcontrib>Jamali, Arash</creatorcontrib><creatorcontrib>Chotard, Jean-Noel</creatorcontrib><creatorcontrib>Seznec, Vincent</creatorcontrib><creatorcontrib>Hanna, John V.</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Duchamp, Martial</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cretu, Sorina</au><au>Bradley, David G.</au><au>Feng, Li Patrick Wen</au><au>Kudu, Omer Ulas</au><au>Nguyen, Linh Lan</au><au>Nguyen, Tuan Tu</au><au>Jamali, Arash</au><au>Chotard, Jean-Noel</au><au>Seznec, Vincent</au><au>Hanna, John V.</au><au>Demortière, Arnaud</au><au>Duchamp, Martial</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-08-23</date><risdate>2023</risdate><volume>15</volume><issue>33</issue><spage>39186</spage><epage>39197</epage><pages>39186-39197</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a promising oxide solid electrolyte for all-solid-state batteries due to its excellent air stability, acceptable electrochemical stability window, and cost-effective precursor materials. However, further improvement in the ionic conductivity performance of oxide solid-state electrolytes is hindered by the presence of grain boundaries and their associated morphologies and composition. These key factors thus represent a major obstacle to the improved design of modern oxide based solid-state electrolytes. This study establishes a correlation between the influence of the grain boundary phases, their 3D morphology, and compositions formed under different sintering conditions on the overall LAGP ionic conductivity. Spark plasma sintering has been employed to sinter oxide solid electrolyte material at different temperatures with high compacity values, whereas a combined potentiostatic electrochemical impedance spectroscopy, 3D FIB-SEM tomography, XRD, and solid-state NMR/materials modeling approach provides an in-depth analysis of the influence of the morphology, structure, and composition of the grain boundary phases that impact the total ionic conductivity. This work establishes the first 3D FIB-SEM tomography analysis of the LAGP morphology and the secondary phases formed in the grain boundaries at the nanoscale level, whereas the associated 31P and 27Al MAS NMR study coupled with materials modeling reveals that the grain boundary material is composed of Li4P2O7 and disordered Li9Al3(P2O7)3(PO4)2 phases. Quantitative 31P MAS NMR measurements demonstrate that optimal ionic conductivity for the LAGP system is achieved for the 680 °C SPS preparation when the disordered Li9Al3(P2O7)3(PO4)2 phase dominates the grain boundary composition with reduced contributions from the highly ordered Li4P2O7 phases, whereas the 27Al MAS NMR data reveal that minimal structural change is experienced by each phase throughout this suite of sintering temperatures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37556356</pmid><doi>10.1021/acsami.3c03839</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4706-4592</orcidid><orcidid>https://orcid.org/0000-0003-2105-3059</orcidid><orcidid>https://orcid.org/0000-0002-9867-7954</orcidid><orcidid>https://orcid.org/0000-0002-0644-3932</orcidid><orcidid>https://orcid.org/0000-0001-9358-7768</orcidid><orcidid>https://orcid.org/0000-0001-5233-5943</orcidid><orcidid>https://orcid.org/0000-0003-3764-4435</orcidid><orcidid>https://orcid.org/0000-0003-3013-9276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-08, Vol.15 (33), p.39186-39197
issn 1944-8244
1944-8252
language eng
recordid cdi_hal_primary_oai_HAL_hal_04179871v1
source American Chemical Society Journals
subjects Chemical Sciences
Energy, Environmental, and Catalysis Applications
Material chemistry
title The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Intergrain%20Phases%20on%20the%20Ionic%20Conductivity%20of%20the%20LAGP%20Solid%20Electrolyte%20Material%20Prepared%20by%20Spark%20Plasma%20Sintering&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cretu,%20Sorina&rft.date=2023-08-23&rft.volume=15&rft.issue=33&rft.spage=39186&rft.epage=39197&rft.pages=39186-39197&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c03839&rft_dat=%3Cproquest_hal_p%3E2848842831%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848842831&rft_id=info:pmid/37556356&rfr_iscdi=true