Chromatin structure from high resolution microscopy: Scaling laws and microphase separation

Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2024-02, Vol.109 (2-1), p.024408-024408, Article 024408
Hauptverfasser: Remini, Loucif, Segers, Midas, Palmeri, John, Walter, Jean-Charles, Parmeggiani, Andrea, Carlon, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024408
container_issue 2-1
container_start_page 024408
container_title Physical review. E
container_volume 109
creator Remini, Loucif
Segers, Midas
Palmeri, John
Walter, Jean-Charles
Parmeggiani, Andrea
Carlon, Enrico
description Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.
doi_str_mv 10.1103/PhysRevE.109.024408
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04177307v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958292151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-46cebded2183e9c9034615f7beee10a57394484a43d6b88ab81073fe3b5e16093</originalsourceid><addsrcrecordid>eNo9UctOwzAQtBAIUOELkJCPcEhZx04cc6uqQpEqgXicOFhOsiFBeWEnRf17EqX0tKvZmV3NDiFXDOaMAb97yXfuFberOQM1B18IiI7IuS8keAABPz70Ijgjl859AwALQUnmn5IzHgnFQibPyecyt01luqKmrrN90vUWaTZANC--cmrRNWXfFU1NqyKxjUuadndP3xJTFvUXLc2vo6ZOp2GbG4fUYWusGSUX5CQzpcPLfZ2Rj4fV-3LtbZ4fn5aLjZdwLjpPhAnGKaY-iziqRAEXIQsyGSMiAxNIroSIhBE8DeMoMnHEQPIMeRzgaInPyO20Nzelbm1RGbvTjSn0erHRIwaCSclBbvnAvZm4rW1-enSdrgqXYFmaGpveaV8Fka98FrCByifq6NtZzA67GegxBP0fwgAoPYUwqK73B_q4wvSg-X85_wMQtYRr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958292151</pqid></control><display><type>article</type><title>Chromatin structure from high resolution microscopy: Scaling laws and microphase separation</title><source>American Physical Society</source><creator>Remini, Loucif ; Segers, Midas ; Palmeri, John ; Walter, Jean-Charles ; Parmeggiani, Andrea ; Carlon, Enrico</creator><creatorcontrib>Remini, Loucif ; Segers, Midas ; Palmeri, John ; Walter, Jean-Charles ; Parmeggiani, Andrea ; Carlon, Enrico</creatorcontrib><description>Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.109.024408</identifier><identifier>PMID: 38491617</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Life Sciences ; Physics</subject><ispartof>Physical review. E, 2024-02, Vol.109 (2-1), p.024408-024408, Article 024408</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-46cebded2183e9c9034615f7beee10a57394484a43d6b88ab81073fe3b5e16093</cites><orcidid>0000-0002-1298-759X ; 0000-0002-7313-0100 ; 0000-0001-8266-1096 ; 0000-0003-3025-4266 ; 0000-0001-6337-0955 ; 0000-0001-8790-881X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38491617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04177307$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Remini, Loucif</creatorcontrib><creatorcontrib>Segers, Midas</creatorcontrib><creatorcontrib>Palmeri, John</creatorcontrib><creatorcontrib>Walter, Jean-Charles</creatorcontrib><creatorcontrib>Parmeggiani, Andrea</creatorcontrib><creatorcontrib>Carlon, Enrico</creatorcontrib><title>Chromatin structure from high resolution microscopy: Scaling laws and microphase separation</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.</description><subject>Life Sciences</subject><subject>Physics</subject><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UctOwzAQtBAIUOELkJCPcEhZx04cc6uqQpEqgXicOFhOsiFBeWEnRf17EqX0tKvZmV3NDiFXDOaMAb97yXfuFberOQM1B18IiI7IuS8keAABPz70Ijgjl859AwALQUnmn5IzHgnFQibPyecyt01luqKmrrN90vUWaTZANC--cmrRNWXfFU1NqyKxjUuadndP3xJTFvUXLc2vo6ZOp2GbG4fUYWusGSUX5CQzpcPLfZ2Rj4fV-3LtbZ4fn5aLjZdwLjpPhAnGKaY-iziqRAEXIQsyGSMiAxNIroSIhBE8DeMoMnHEQPIMeRzgaInPyO20Nzelbm1RGbvTjSn0erHRIwaCSclBbvnAvZm4rW1-enSdrgqXYFmaGpveaV8Fka98FrCByifq6NtZzA67GegxBP0fwgAoPYUwqK73B_q4wvSg-X85_wMQtYRr</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Remini, Loucif</creator><creator>Segers, Midas</creator><creator>Palmeri, John</creator><creator>Walter, Jean-Charles</creator><creator>Parmeggiani, Andrea</creator><creator>Carlon, Enrico</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1298-759X</orcidid><orcidid>https://orcid.org/0000-0002-7313-0100</orcidid><orcidid>https://orcid.org/0000-0001-8266-1096</orcidid><orcidid>https://orcid.org/0000-0003-3025-4266</orcidid><orcidid>https://orcid.org/0000-0001-6337-0955</orcidid><orcidid>https://orcid.org/0000-0001-8790-881X</orcidid></search><sort><creationdate>20240201</creationdate><title>Chromatin structure from high resolution microscopy: Scaling laws and microphase separation</title><author>Remini, Loucif ; Segers, Midas ; Palmeri, John ; Walter, Jean-Charles ; Parmeggiani, Andrea ; Carlon, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-46cebded2183e9c9034615f7beee10a57394484a43d6b88ab81073fe3b5e16093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Life Sciences</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remini, Loucif</creatorcontrib><creatorcontrib>Segers, Midas</creatorcontrib><creatorcontrib>Palmeri, John</creatorcontrib><creatorcontrib>Walter, Jean-Charles</creatorcontrib><creatorcontrib>Parmeggiani, Andrea</creatorcontrib><creatorcontrib>Carlon, Enrico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remini, Loucif</au><au>Segers, Midas</au><au>Palmeri, John</au><au>Walter, Jean-Charles</au><au>Parmeggiani, Andrea</au><au>Carlon, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin structure from high resolution microscopy: Scaling laws and microphase separation</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>109</volume><issue>2-1</issue><spage>024408</spage><epage>024408</epage><pages>024408-024408</pages><artnum>024408</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase β. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>38491617</pmid><doi>10.1103/PhysRevE.109.024408</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1298-759X</orcidid><orcidid>https://orcid.org/0000-0002-7313-0100</orcidid><orcidid>https://orcid.org/0000-0001-8266-1096</orcidid><orcidid>https://orcid.org/0000-0003-3025-4266</orcidid><orcidid>https://orcid.org/0000-0001-6337-0955</orcidid><orcidid>https://orcid.org/0000-0001-8790-881X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2024-02, Vol.109 (2-1), p.024408-024408, Article 024408
issn 2470-0045
2470-0053
language eng
recordid cdi_hal_primary_oai_HAL_hal_04177307v3
source American Physical Society
subjects Life Sciences
Physics
title Chromatin structure from high resolution microscopy: Scaling laws and microphase separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20structure%20from%20high%20resolution%20microscopy:%20Scaling%20laws%20and%20microphase%20separation&rft.jtitle=Physical%20review.%20E&rft.au=Remini,%20Loucif&rft.date=2024-02-01&rft.volume=109&rft.issue=2-1&rft.spage=024408&rft.epage=024408&rft.pages=024408-024408&rft.artnum=024408&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.109.024408&rft_dat=%3Cproquest_hal_p%3E2958292151%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958292151&rft_id=info:pmid/38491617&rfr_iscdi=true