Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data
Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | |
container_start_page | 247 |
container_title | |
container_volume | 12850 |
creator | Kalampokis, Evangelos Karamanou, Areti Tarabanis, Konstantinos |
description | Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it. |
doi_str_mv | 10.1007/978-3-030-84789-0_18 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04175112v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6715921_225_258</sourcerecordid><originalsourceid>FETCH-LOGICAL-h323t-95a11103ce2233b4a5c84a76f6f6bb396e4b1e18275a77a647442c1154bfb793</originalsourceid><addsrcrecordid>eNo1kE1OwzAQhc2vKNAbsMiWhcHjcWJnWfFXpErdVGJpOWHaGowTkoDgNpyFk-FS0Cxm9Oa9keZj7AzEBQihL0ttOHKBghulTcmFBbPDxknGJP5qYpeNoADgiKrcY8f_C2P22SjNkpda4SE7BlkUWAAaOGLjvn8SQkgtwSgcsYdJ24ZPH1fZzUcbnI-uCpRNusEvfe1dyO7jQCH4FcWasgXV6-hf36jPmvj9NfPxmR6zeUsxu2veqYsvFIfs2g3ulB0sXehp_NdP2OL2ZnE15bP53f3VZMbXKHHgZe4AQGBNUiJWyuW1UU4Xy1RVhWVBqgICI3XutHaF0krJGiBX1bLSJZ6w8-3ZtQu27fyL6z5t47ydTmZ2owkFOgeQ75C8cuvtkzGuqLNV0zz3FhLbhNwmthZtAmd_8doN8hRS21DbNZu_B0ubVJ3-7Fyo164dqOttoSEvJVgpcytzgz-MKX7z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6715921_225_258</pqid></control><display><type>book_chapter</type><title>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</title><source>Springer Books</source><creator>Kalampokis, Evangelos ; Karamanou, Areti ; Tarabanis, Konstantinos</creator><contributor>Rodríguez Bolívar, Manuel Pedro ; Kalampokis, Evangelos ; Lindgren, Ida ; Gil-Garcia, J. Ramon ; Scholl, Hans Jochen ; Janssen, Marijn</contributor><creatorcontrib>Kalampokis, Evangelos ; Karamanou, Areti ; Tarabanis, Konstantinos ; Rodríguez Bolívar, Manuel Pedro ; Kalampokis, Evangelos ; Lindgren, Ida ; Gil-Garcia, J. Ramon ; Scholl, Hans Jochen ; Janssen, Marijn</creatorcontrib><description>Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3030847888</identifier><identifier>ISBN: 9783030847883</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783030847890</identifier><identifier>EISBN: 3030847896</identifier><identifier>DOI: 10.1007/978-3-030-84789-0_18</identifier><identifier>OCLC: 1266361381</identifier><identifier>LCCallNum: QA76.9.C66</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Artificial intelligence ; Computer Science ; Humanities and Social Sciences ; Library and information sciences ; Linked data ; Machine learning ; Open Government Data ; SHAP ; XAI ; XGBoost</subject><ispartof>Electronic Government, 2021, Vol.12850, p.247-258</ispartof><rights>IFIP International Federation for Information Processing 2021</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2357-9169 ; 0000-0002-4663-2113 ; 0000-0003-4416-8764</orcidid><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6715921-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-030-84789-0_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-84789-0_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,775,776,780,785,786,789,881,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04175112$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Rodríguez Bolívar, Manuel Pedro</contributor><contributor>Kalampokis, Evangelos</contributor><contributor>Lindgren, Ida</contributor><contributor>Gil-Garcia, J. Ramon</contributor><contributor>Scholl, Hans Jochen</contributor><contributor>Janssen, Marijn</contributor><creatorcontrib>Kalampokis, Evangelos</creatorcontrib><creatorcontrib>Karamanou, Areti</creatorcontrib><creatorcontrib>Tarabanis, Konstantinos</creatorcontrib><title>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</title><title>Electronic Government</title><description>Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Humanities and Social Sciences</subject><subject>Library and information sciences</subject><subject>Linked data</subject><subject>Machine learning</subject><subject>Open Government Data</subject><subject>SHAP</subject><subject>XAI</subject><subject>XGBoost</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3030847888</isbn><isbn>9783030847883</isbn><isbn>9783030847890</isbn><isbn>3030847896</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1kE1OwzAQhc2vKNAbsMiWhcHjcWJnWfFXpErdVGJpOWHaGowTkoDgNpyFk-FS0Cxm9Oa9keZj7AzEBQihL0ttOHKBghulTcmFBbPDxknGJP5qYpeNoADgiKrcY8f_C2P22SjNkpda4SE7BlkUWAAaOGLjvn8SQkgtwSgcsYdJ24ZPH1fZzUcbnI-uCpRNusEvfe1dyO7jQCH4FcWasgXV6-hf36jPmvj9NfPxmR6zeUsxu2veqYsvFIfs2g3ulB0sXehp_NdP2OL2ZnE15bP53f3VZMbXKHHgZe4AQGBNUiJWyuW1UU4Xy1RVhWVBqgICI3XutHaF0krJGiBX1bLSJZ6w8-3ZtQu27fyL6z5t47ydTmZ2owkFOgeQ75C8cuvtkzGuqLNV0zz3FhLbhNwmthZtAmd_8doN8hRS21DbNZu_B0ubVJ3-7Fyo164dqOttoSEvJVgpcytzgz-MKX7z</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kalampokis, Evangelos</creator><creator>Karamanou, Areti</creator><creator>Tarabanis, Konstantinos</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2357-9169</orcidid><orcidid>https://orcid.org/0000-0002-4663-2113</orcidid><orcidid>https://orcid.org/0000-0003-4416-8764</orcidid></search><sort><creationdate>2021</creationdate><title>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</title><author>Kalampokis, Evangelos ; Karamanou, Areti ; Tarabanis, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h323t-95a11103ce2233b4a5c84a76f6f6bb396e4b1e18275a77a647442c1154bfb793</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Humanities and Social Sciences</topic><topic>Library and information sciences</topic><topic>Linked data</topic><topic>Machine learning</topic><topic>Open Government Data</topic><topic>SHAP</topic><topic>XAI</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalampokis, Evangelos</creatorcontrib><creatorcontrib>Karamanou, Areti</creatorcontrib><creatorcontrib>Tarabanis, Konstantinos</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalampokis, Evangelos</au><au>Karamanou, Areti</au><au>Tarabanis, Konstantinos</au><au>Rodríguez Bolívar, Manuel Pedro</au><au>Kalampokis, Evangelos</au><au>Lindgren, Ida</au><au>Gil-Garcia, J. Ramon</au><au>Scholl, Hans Jochen</au><au>Janssen, Marijn</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</atitle><btitle>Electronic Government</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2021</date><risdate>2021</risdate><volume>12850</volume><spage>247</spage><epage>258</epage><pages>247-258</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3030847888</isbn><isbn>9783030847883</isbn><eisbn>9783030847890</eisbn><eisbn>3030847896</eisbn><abstract>Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-84789-0_18</doi><oclcid>1266361381</oclcid><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2357-9169</orcidid><orcidid>https://orcid.org/0000-0002-4663-2113</orcidid><orcidid>https://orcid.org/0000-0003-4416-8764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Electronic Government, 2021, Vol.12850, p.247-258 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04175112v1 |
source | Springer Books |
subjects | Artificial intelligence Computer Science Humanities and Social Sciences Library and information sciences Linked data Machine learning Open Government Data SHAP XAI XGBoost |
title | Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Applying%20Explainable%20Artificial%20Intelligence%20Techniques%20on%C2%A0Linked%20Open%20Government%20Data&rft.btitle=Electronic%20Government&rft.au=Kalampokis,%20Evangelos&rft.date=2021&rft.volume=12850&rft.spage=247&rft.epage=258&rft.pages=247-258&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3030847888&rft.isbn_list=9783030847883&rft_id=info:doi/10.1007/978-3-030-84789-0_18&rft_dat=%3Cproquest_hal_p%3EEBC6715921_225_258%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030847890&rft.eisbn_list=3030847896&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6715921_225_258&rft_id=info:pmid/&rfr_iscdi=true |