Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data

Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalampokis, Evangelos, Karamanou, Areti, Tarabanis, Konstantinos
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue
container_start_page 247
container_title
container_volume 12850
creator Kalampokis, Evangelos
Karamanou, Areti
Tarabanis, Konstantinos
description Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.
doi_str_mv 10.1007/978-3-030-84789-0_18
format Book Chapter
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04175112v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6715921_225_258</sourcerecordid><originalsourceid>FETCH-LOGICAL-h323t-95a11103ce2233b4a5c84a76f6f6bb396e4b1e18275a77a647442c1154bfb793</originalsourceid><addsrcrecordid>eNo1kE1OwzAQhc2vKNAbsMiWhcHjcWJnWfFXpErdVGJpOWHaGowTkoDgNpyFk-FS0Cxm9Oa9keZj7AzEBQihL0ttOHKBghulTcmFBbPDxknGJP5qYpeNoADgiKrcY8f_C2P22SjNkpda4SE7BlkUWAAaOGLjvn8SQkgtwSgcsYdJ24ZPH1fZzUcbnI-uCpRNusEvfe1dyO7jQCH4FcWasgXV6-hf36jPmvj9NfPxmR6zeUsxu2veqYsvFIfs2g3ulB0sXehp_NdP2OL2ZnE15bP53f3VZMbXKHHgZe4AQGBNUiJWyuW1UU4Xy1RVhWVBqgICI3XutHaF0krJGiBX1bLSJZ6w8-3ZtQu27fyL6z5t47ydTmZ2owkFOgeQ75C8cuvtkzGuqLNV0zz3FhLbhNwmthZtAmd_8doN8hRS21DbNZu_B0ubVJ3-7Fyo164dqOttoSEvJVgpcytzgz-MKX7z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6715921_225_258</pqid></control><display><type>book_chapter</type><title>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</title><source>Springer Books</source><creator>Kalampokis, Evangelos ; Karamanou, Areti ; Tarabanis, Konstantinos</creator><contributor>Rodríguez Bolívar, Manuel Pedro ; Kalampokis, Evangelos ; Lindgren, Ida ; Gil-Garcia, J. Ramon ; Scholl, Hans Jochen ; Janssen, Marijn</contributor><creatorcontrib>Kalampokis, Evangelos ; Karamanou, Areti ; Tarabanis, Konstantinos ; Rodríguez Bolívar, Manuel Pedro ; Kalampokis, Evangelos ; Lindgren, Ida ; Gil-Garcia, J. Ramon ; Scholl, Hans Jochen ; Janssen, Marijn</creatorcontrib><description>Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3030847888</identifier><identifier>ISBN: 9783030847883</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783030847890</identifier><identifier>EISBN: 3030847896</identifier><identifier>DOI: 10.1007/978-3-030-84789-0_18</identifier><identifier>OCLC: 1266361381</identifier><identifier>LCCallNum: QA76.9.C66</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Artificial intelligence ; Computer Science ; Humanities and Social Sciences ; Library and information sciences ; Linked data ; Machine learning ; Open Government Data ; SHAP ; XAI ; XGBoost</subject><ispartof>Electronic Government, 2021, Vol.12850, p.247-258</ispartof><rights>IFIP International Federation for Information Processing 2021</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2357-9169 ; 0000-0002-4663-2113 ; 0000-0003-4416-8764</orcidid><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6715921-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-030-84789-0_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-030-84789-0_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,775,776,780,785,786,789,881,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-04175112$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Rodríguez Bolívar, Manuel Pedro</contributor><contributor>Kalampokis, Evangelos</contributor><contributor>Lindgren, Ida</contributor><contributor>Gil-Garcia, J. Ramon</contributor><contributor>Scholl, Hans Jochen</contributor><contributor>Janssen, Marijn</contributor><creatorcontrib>Kalampokis, Evangelos</creatorcontrib><creatorcontrib>Karamanou, Areti</creatorcontrib><creatorcontrib>Tarabanis, Konstantinos</creatorcontrib><title>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</title><title>Electronic Government</title><description>Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Humanities and Social Sciences</subject><subject>Library and information sciences</subject><subject>Linked data</subject><subject>Machine learning</subject><subject>Open Government Data</subject><subject>SHAP</subject><subject>XAI</subject><subject>XGBoost</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3030847888</isbn><isbn>9783030847883</isbn><isbn>9783030847890</isbn><isbn>3030847896</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1kE1OwzAQhc2vKNAbsMiWhcHjcWJnWfFXpErdVGJpOWHaGowTkoDgNpyFk-FS0Cxm9Oa9keZj7AzEBQihL0ttOHKBghulTcmFBbPDxknGJP5qYpeNoADgiKrcY8f_C2P22SjNkpda4SE7BlkUWAAaOGLjvn8SQkgtwSgcsYdJ24ZPH1fZzUcbnI-uCpRNusEvfe1dyO7jQCH4FcWasgXV6-hf36jPmvj9NfPxmR6zeUsxu2veqYsvFIfs2g3ulB0sXehp_NdP2OL2ZnE15bP53f3VZMbXKHHgZe4AQGBNUiJWyuW1UU4Xy1RVhWVBqgICI3XutHaF0krJGiBX1bLSJZ6w8-3ZtQu27fyL6z5t47ydTmZ2owkFOgeQ75C8cuvtkzGuqLNV0zz3FhLbhNwmthZtAmd_8doN8hRS21DbNZu_B0ubVJ3-7Fyo164dqOttoSEvJVgpcytzgz-MKX7z</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Kalampokis, Evangelos</creator><creator>Karamanou, Areti</creator><creator>Tarabanis, Konstantinos</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2357-9169</orcidid><orcidid>https://orcid.org/0000-0002-4663-2113</orcidid><orcidid>https://orcid.org/0000-0003-4416-8764</orcidid></search><sort><creationdate>2021</creationdate><title>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</title><author>Kalampokis, Evangelos ; Karamanou, Areti ; Tarabanis, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h323t-95a11103ce2233b4a5c84a76f6f6bb396e4b1e18275a77a647442c1154bfb793</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Humanities and Social Sciences</topic><topic>Library and information sciences</topic><topic>Linked data</topic><topic>Machine learning</topic><topic>Open Government Data</topic><topic>SHAP</topic><topic>XAI</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalampokis, Evangelos</creatorcontrib><creatorcontrib>Karamanou, Areti</creatorcontrib><creatorcontrib>Tarabanis, Konstantinos</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalampokis, Evangelos</au><au>Karamanou, Areti</au><au>Tarabanis, Konstantinos</au><au>Rodríguez Bolívar, Manuel Pedro</au><au>Kalampokis, Evangelos</au><au>Lindgren, Ida</au><au>Gil-Garcia, J. Ramon</au><au>Scholl, Hans Jochen</au><au>Janssen, Marijn</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data</atitle><btitle>Electronic Government</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2021</date><risdate>2021</risdate><volume>12850</volume><spage>247</spage><epage>258</epage><pages>247-258</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3030847888</isbn><isbn>9783030847883</isbn><eisbn>9783030847890</eisbn><eisbn>3030847896</eisbn><abstract>Machine learning and artificial intelligence models have the potential to streamline public services and policy making. Frequently, however, the patterns a model uncovers can be more important than the model’s performance. Explainable Artificial Intelligence (XAI) have been recently introduced as a set of techniques that enable explaining individual decisions made by a model. Although XAI has been proved important in various domains, the need of using relevant techniques in public administration has only recently emerged. The objective of this paper is to explore the value and the feasibility of creating XAI models using high quality open government data that are provided in the form of linked open statistical data. Towards this end, a process for exploiting linked open statistical data in the creation of explainable models is presented. Moreover, a case study where linked data from the Scottish open statistics portal is exploited in order to predict and interpret the probability the mean house price of a data zone to be higher than the average price in Scotland is described. The XGBoost algorithm is used to create the predictive model and the SHAP framework to explain it.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-030-84789-0_18</doi><oclcid>1266361381</oclcid><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2357-9169</orcidid><orcidid>https://orcid.org/0000-0002-4663-2113</orcidid><orcidid>https://orcid.org/0000-0003-4416-8764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Electronic Government, 2021, Vol.12850, p.247-258
issn 0302-9743
1611-3349
language eng
recordid cdi_hal_primary_oai_HAL_hal_04175112v1
source Springer Books
subjects Artificial intelligence
Computer Science
Humanities and Social Sciences
Library and information sciences
Linked data
Machine learning
Open Government Data
SHAP
XAI
XGBoost
title Applying Explainable Artificial Intelligence Techniques on Linked Open Government Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Applying%20Explainable%20Artificial%20Intelligence%20Techniques%20on%C2%A0Linked%20Open%20Government%20Data&rft.btitle=Electronic%20Government&rft.au=Kalampokis,%20Evangelos&rft.date=2021&rft.volume=12850&rft.spage=247&rft.epage=258&rft.pages=247-258&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3030847888&rft.isbn_list=9783030847883&rft_id=info:doi/10.1007/978-3-030-84789-0_18&rft_dat=%3Cproquest_hal_p%3EEBC6715921_225_258%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783030847890&rft.eisbn_list=3030847896&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6715921_225_258&rft_id=info:pmid/&rfr_iscdi=true