Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta)

Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology 2023-08, Vol.59 (4), p.681-697
Hauptverfasser: Heiser, Sabrina, Amsler, Charles D., Stoeckel, Solenn, McClintock, James B., Baker, Bill J., Krueger‐Hadfield, Stacy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 4
container_start_page 681
container_title Journal of phycology
container_volume 59
creator Heiser, Sabrina
Amsler, Charles D.
Stoeckel, Solenn
McClintock, James B.
Baker, Bill J.
Krueger‐Hadfield, Stacy A.
description Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid‐diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid‐diploid macroalgae at high latitudes where endemism is common. Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site‐specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid‐diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required.
doi_str_mv 10.1111/jpy.13339
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04167428v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848253137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4229-1af93c8545df14a5eee2caf3cd859af034b6bf050fc7a92477932bb0e9d377d53</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModq1e-Ack4E0L7jZfM5m5XIq1yoJF6oVXIZOcOFlmJmMyYxl_vdlurSCYm0B48rzn8CL0mpINzediPy4byjmvn6AVLVi9rioqn6IVIYyteSnKE_QipT0hRJYFfY5OuKRUZGiF0i1MUacxxDC2y-QNbrxO2IR57MDiOz-1uIUJYvi1fA8TYAvOGw-DWbAf8HaYdDSHbzddMLr3c4_TuMFnV12I3sJBakDDO_ylDfY-Qp-_RM-c7hK8erhP0der97eX1-vd5w8fL7e7tREsL0G1q7mpClFYR4UuAIAZ7bixVVFrR7hoysaRgjgjdc2ElDVnTUOgtlxKW_BTdH70trpTY_S9josK2qvr7U4d3oigpRSs-kkze3Zkxxh-zJAm1ftkoOv0AGFOilVE1ozl5Iy-_QfdhzkOeZNMiYoVnHL5N9zEkFIE9zgBJerQmsqtqfvWMvvmwTg3PdhH8k9NGbg4Ane-g-X_JvXp5ttR-RvJkqHH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848253137</pqid></control><display><type>article</type><title>Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta)</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Heiser, Sabrina ; Amsler, Charles D. ; Stoeckel, Solenn ; McClintock, James B. ; Baker, Bill J. ; Krueger‐Hadfield, Stacy A.</creator><creatorcontrib>Heiser, Sabrina ; Amsler, Charles D. ; Stoeckel, Solenn ; McClintock, James B. ; Baker, Bill J. ; Krueger‐Hadfield, Stacy A.</creatorcontrib><description>Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid‐diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid‐diploid macroalgae at high latitudes where endemism is common. Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site‐specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid‐diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required.</description><identifier>ISSN: 0022-3646</identifier><identifier>EISSN: 1529-8817</identifier><identifier>DOI: 10.1111/jpy.13339</identifier><identifier>PMID: 37114881</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algae ; Angiosperms ; Asexual reproduction ; clonal rates ; Diploids ; Diploidy ; Endemism ; Environmental Sciences ; Eukaryotes ; gametophytes ; Haploidy ; Heterozygotes ; homozygote excess ; Latitude ; Life cycle ; Life cycles ; mating system ; Meiosis ; Microsatellites ; Natural populations ; Plocamium ; Ploidy ; Population studies ; Reproduction ; Reproductive system ; seaweed ; Seaweeds ; Sexual reproduction ; Tetrasporophytes</subject><ispartof>Journal of phycology, 2023-08, Vol.59 (4), p.681-697</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of Phycological Society of America.</rights><rights>2023 The Authors. Journal of Phycology published by Wiley Periodicals LLC on behalf of Phycological Society of America.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4229-1af93c8545df14a5eee2caf3cd859af034b6bf050fc7a92477932bb0e9d377d53</citedby><cites>FETCH-LOGICAL-c4229-1af93c8545df14a5eee2caf3cd859af034b6bf050fc7a92477932bb0e9d377d53</cites><orcidid>0000-0002-4843-3759 ; 0000-0003-3307-3233 ; 0000-0001-6064-5941 ; 0000-0002-6295-5094 ; 0000-0002-7324-7448 ; 0000-0003-3033-5779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjpy.13339$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjpy.13339$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37114881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04167428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Heiser, Sabrina</creatorcontrib><creatorcontrib>Amsler, Charles D.</creatorcontrib><creatorcontrib>Stoeckel, Solenn</creatorcontrib><creatorcontrib>McClintock, James B.</creatorcontrib><creatorcontrib>Baker, Bill J.</creatorcontrib><creatorcontrib>Krueger‐Hadfield, Stacy A.</creatorcontrib><title>Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta)</title><title>Journal of phycology</title><addtitle>J Phycol</addtitle><description>Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid‐diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid‐diploid macroalgae at high latitudes where endemism is common. Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site‐specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid‐diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required.</description><subject>Algae</subject><subject>Angiosperms</subject><subject>Asexual reproduction</subject><subject>clonal rates</subject><subject>Diploids</subject><subject>Diploidy</subject><subject>Endemism</subject><subject>Environmental Sciences</subject><subject>Eukaryotes</subject><subject>gametophytes</subject><subject>Haploidy</subject><subject>Heterozygotes</subject><subject>homozygote excess</subject><subject>Latitude</subject><subject>Life cycle</subject><subject>Life cycles</subject><subject>mating system</subject><subject>Meiosis</subject><subject>Microsatellites</subject><subject>Natural populations</subject><subject>Plocamium</subject><subject>Ploidy</subject><subject>Population studies</subject><subject>Reproduction</subject><subject>Reproductive system</subject><subject>seaweed</subject><subject>Seaweeds</subject><subject>Sexual reproduction</subject><subject>Tetrasporophytes</subject><issn>0022-3646</issn><issn>1529-8817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kV1rFDEUhoModq1e-Ack4E0L7jZfM5m5XIq1yoJF6oVXIZOcOFlmJmMyYxl_vdlurSCYm0B48rzn8CL0mpINzediPy4byjmvn6AVLVi9rioqn6IVIYyteSnKE_QipT0hRJYFfY5OuKRUZGiF0i1MUacxxDC2y-QNbrxO2IR57MDiOz-1uIUJYvi1fA8TYAvOGw-DWbAf8HaYdDSHbzddMLr3c4_TuMFnV12I3sJBakDDO_ylDfY-Qp-_RM-c7hK8erhP0der97eX1-vd5w8fL7e7tREsL0G1q7mpClFYR4UuAIAZ7bixVVFrR7hoysaRgjgjdc2ElDVnTUOgtlxKW_BTdH70trpTY_S9josK2qvr7U4d3oigpRSs-kkze3Zkxxh-zJAm1ftkoOv0AGFOilVE1ozl5Iy-_QfdhzkOeZNMiYoVnHL5N9zEkFIE9zgBJerQmsqtqfvWMvvmwTg3PdhH8k9NGbg4Ane-g-X_JvXp5ttR-RvJkqHH</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Heiser, Sabrina</creator><creator>Amsler, Charles D.</creator><creator>Stoeckel, Solenn</creator><creator>McClintock, James B.</creator><creator>Baker, Bill J.</creator><creator>Krueger‐Hadfield, Stacy A.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4843-3759</orcidid><orcidid>https://orcid.org/0000-0003-3307-3233</orcidid><orcidid>https://orcid.org/0000-0001-6064-5941</orcidid><orcidid>https://orcid.org/0000-0002-6295-5094</orcidid><orcidid>https://orcid.org/0000-0002-7324-7448</orcidid><orcidid>https://orcid.org/0000-0003-3033-5779</orcidid></search><sort><creationdate>202308</creationdate><title>Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta)</title><author>Heiser, Sabrina ; Amsler, Charles D. ; Stoeckel, Solenn ; McClintock, James B. ; Baker, Bill J. ; Krueger‐Hadfield, Stacy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4229-1af93c8545df14a5eee2caf3cd859af034b6bf050fc7a92477932bb0e9d377d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algae</topic><topic>Angiosperms</topic><topic>Asexual reproduction</topic><topic>clonal rates</topic><topic>Diploids</topic><topic>Diploidy</topic><topic>Endemism</topic><topic>Environmental Sciences</topic><topic>Eukaryotes</topic><topic>gametophytes</topic><topic>Haploidy</topic><topic>Heterozygotes</topic><topic>homozygote excess</topic><topic>Latitude</topic><topic>Life cycle</topic><topic>Life cycles</topic><topic>mating system</topic><topic>Meiosis</topic><topic>Microsatellites</topic><topic>Natural populations</topic><topic>Plocamium</topic><topic>Ploidy</topic><topic>Population studies</topic><topic>Reproduction</topic><topic>Reproductive system</topic><topic>seaweed</topic><topic>Seaweeds</topic><topic>Sexual reproduction</topic><topic>Tetrasporophytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heiser, Sabrina</creatorcontrib><creatorcontrib>Amsler, Charles D.</creatorcontrib><creatorcontrib>Stoeckel, Solenn</creatorcontrib><creatorcontrib>McClintock, James B.</creatorcontrib><creatorcontrib>Baker, Bill J.</creatorcontrib><creatorcontrib>Krueger‐Hadfield, Stacy A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heiser, Sabrina</au><au>Amsler, Charles D.</au><au>Stoeckel, Solenn</au><au>McClintock, James B.</au><au>Baker, Bill J.</au><au>Krueger‐Hadfield, Stacy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta)</atitle><jtitle>Journal of phycology</jtitle><addtitle>J Phycol</addtitle><date>2023-08</date><risdate>2023</risdate><volume>59</volume><issue>4</issue><spage>681</spage><epage>697</epage><pages>681-697</pages><issn>0022-3646</issn><eissn>1529-8817</eissn><abstract>Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid‐diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid‐diploid macroalgae at high latitudes where endemism is common. Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site‐specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid‐diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37114881</pmid><doi>10.1111/jpy.13339</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4843-3759</orcidid><orcidid>https://orcid.org/0000-0003-3307-3233</orcidid><orcidid>https://orcid.org/0000-0001-6064-5941</orcidid><orcidid>https://orcid.org/0000-0002-6295-5094</orcidid><orcidid>https://orcid.org/0000-0002-7324-7448</orcidid><orcidid>https://orcid.org/0000-0003-3033-5779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3646
ispartof Journal of phycology, 2023-08, Vol.59 (4), p.681-697
issn 0022-3646
1529-8817
language eng
recordid cdi_hal_primary_oai_HAL_hal_04167428v1
source Wiley Online Library - AutoHoldings Journals
subjects Algae
Angiosperms
Asexual reproduction
clonal rates
Diploids
Diploidy
Endemism
Environmental Sciences
Eukaryotes
gametophytes
Haploidy
Heterozygotes
homozygote excess
Latitude
Life cycle
Life cycles
mating system
Meiosis
Microsatellites
Natural populations
Plocamium
Ploidy
Population studies
Reproduction
Reproductive system
seaweed
Seaweeds
Sexual reproduction
Tetrasporophytes
title Tetrasporophytic bias coupled with heterozygote deficiency in Antarctic Plocamium sp. (Florideophyceae, Rhodophyta)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetrasporophytic%20bias%20coupled%20with%20heterozygote%20deficiency%20in%20Antarctic%20Plocamium%20sp.%20(Florideophyceae,%20Rhodophyta)&rft.jtitle=Journal%20of%20phycology&rft.au=Heiser,%20Sabrina&rft.date=2023-08&rft.volume=59&rft.issue=4&rft.spage=681&rft.epage=697&rft.pages=681-697&rft.issn=0022-3646&rft.eissn=1529-8817&rft_id=info:doi/10.1111/jpy.13339&rft_dat=%3Cproquest_hal_p%3E2848253137%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848253137&rft_id=info:pmid/37114881&rfr_iscdi=true