Machine learning for optimal flow control in an axial compressor

Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2023-04, Vol.46 (4), p.28-28, Article 28
Hauptverfasser: Elhawary, M. A., Romanò, Francesco, Loiseau, Jean-Christophe, Dazin, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 4
container_start_page 28
container_title The European physical journal. E, Soft matter and biological physics
container_volume 46
creator Elhawary, M. A.
Romanò, Francesco
Loiseau, Jean-Christophe
Dazin, Antoine
description Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters on the surge margin improvement and power balance is modeled using two shallow neural networks. Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e., Ω = 3200 RPM , 4500 RPM and 6000 RPM . First, surge margin improvement and power balance are being maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from 1 ∘ to 11 ∘ . These outcomes point out a potential generalization of the control strategy applicable to other compressors.
doi_str_mv 10.1140/epje/s10189-023-00284-9
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04164557v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800198965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-d710280bd72ef7b5213e65a9ecc640c7ae41bf58258333fe6eb62ff2188a04883</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlb_gg640cVonpPMThFfUHGj4C5k0hs7ZToZk9bHvzd1tIIbIZCQ-53DSQ5CBwSfEMLxKXQzOI0EE1XmmLIcY6p4Xm6gIaElzVUpnjbXZ04GaCfGGcY4adk2GjCJOcNSDNHZnbHTuoWsARPaun3OnA-Z7xb13DSZa_xbZn27CL7J6jYzab3XaWD9vAsQow-7aMuZJsLe9z5Cj1eXDxc3-fj--vbifJxbLtkin0iSIuJqIik4WQlKGBTClGBtwbGVBjipnFBUKMaYgwKqgjpHiVIGc6XYCB33vlPT6C6keOFDe1Prm_OxXt1hTgouhHwliT3q2S74lyXEhZ7X0ULTmBb8MuoUJP2EopIm9PAPOvPL0KaX9FSpykIkSvaUDT7GAG6dgGC9KkSvCtF9IToVor8K0WVS7n_7L6s5TNa6nwYSoHogplH7DOE3wH_enwOll7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800198965</pqid></control><display><type>article</type><title>Machine learning for optimal flow control in an axial compressor</title><source>Springer Nature - Complete Springer Journals</source><creator>Elhawary, M. A. ; Romanò, Francesco ; Loiseau, Jean-Christophe ; Dazin, Antoine</creator><creatorcontrib>Elhawary, M. A. ; Romanò, Francesco ; Loiseau, Jean-Christophe ; Dazin, Antoine</creatorcontrib><description>Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters on the surge margin improvement and power balance is modeled using two shallow neural networks. Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e., Ω = 3200 RPM , 4500 RPM and 6000 RPM . First, surge margin improvement and power balance are being maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from 1 ∘ to 11 ∘ . These outcomes point out a potential generalization of the control strategy applicable to other compressors.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-023-00284-9</identifier><identifier>PMID: 37043075</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active control ; Air jets ; Biological and Medical Physics ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter physics ; Engineering Sciences ; Flow control ; Fluid Dynamics ; Fluid mechanics ; Fluids mechanics ; Genetic algorithms ; Machine Learning ; Mechanics ; Nanotechnology ; Neural networks ; Optimization ; Parameters ; Physics ; Physics and Astronomy ; Polymer Sciences ; Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks ; Regular Article - Flowing Matter ; Rotating stalls ; Soft and Granular Matter ; Statistics ; Surfaces and Interfaces ; Thin Films ; Tip speed ; Turbocompressors</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2023-04, Vol.46 (4), p.28-28, Article 28</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-d710280bd72ef7b5213e65a9ecc640c7ae41bf58258333fe6eb62ff2188a04883</citedby><cites>FETCH-LOGICAL-c473t-d710280bd72ef7b5213e65a9ecc640c7ae41bf58258333fe6eb62ff2188a04883</cites><orcidid>0000-0003-3560-8596 ; 0000-0002-9511-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-023-00284-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-023-00284-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37043075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnam.hal.science/hal-04164557$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Elhawary, M. A.</creatorcontrib><creatorcontrib>Romanò, Francesco</creatorcontrib><creatorcontrib>Loiseau, Jean-Christophe</creatorcontrib><creatorcontrib>Dazin, Antoine</creatorcontrib><title>Machine learning for optimal flow control in an axial compressor</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters on the surge margin improvement and power balance is modeled using two shallow neural networks. Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e., Ω = 3200 RPM , 4500 RPM and 6000 RPM . First, surge margin improvement and power balance are being maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from 1 ∘ to 11 ∘ . These outcomes point out a potential generalization of the control strategy applicable to other compressors.</description><subject>Active control</subject><subject>Air jets</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter physics</subject><subject>Engineering Sciences</subject><subject>Flow control</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Genetic algorithms</subject><subject>Machine Learning</subject><subject>Mechanics</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks</subject><subject>Regular Article - Flowing Matter</subject><subject>Rotating stalls</subject><subject>Soft and Granular Matter</subject><subject>Statistics</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tip speed</subject><subject>Turbocompressors</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEUhYMotlb_gg640cVonpPMThFfUHGj4C5k0hs7ZToZk9bHvzd1tIIbIZCQ-53DSQ5CBwSfEMLxKXQzOI0EE1XmmLIcY6p4Xm6gIaElzVUpnjbXZ04GaCfGGcY4adk2GjCJOcNSDNHZnbHTuoWsARPaun3OnA-Z7xb13DSZa_xbZn27CL7J6jYzab3XaWD9vAsQow-7aMuZJsLe9z5Cj1eXDxc3-fj--vbifJxbLtkin0iSIuJqIik4WQlKGBTClGBtwbGVBjipnFBUKMaYgwKqgjpHiVIGc6XYCB33vlPT6C6keOFDe1Prm_OxXt1hTgouhHwliT3q2S74lyXEhZ7X0ULTmBb8MuoUJP2EopIm9PAPOvPL0KaX9FSpykIkSvaUDT7GAG6dgGC9KkSvCtF9IToVor8K0WVS7n_7L6s5TNa6nwYSoHogplH7DOE3wH_enwOll7A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Elhawary, M. A.</creator><creator>Romanò, Francesco</creator><creator>Loiseau, Jean-Christophe</creator><creator>Dazin, Antoine</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>EDP Sciences: EPJ</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3560-8596</orcidid><orcidid>https://orcid.org/0000-0002-9511-4718</orcidid></search><sort><creationdate>20230401</creationdate><title>Machine learning for optimal flow control in an axial compressor</title><author>Elhawary, M. A. ; Romanò, Francesco ; Loiseau, Jean-Christophe ; Dazin, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-d710280bd72ef7b5213e65a9ecc640c7ae41bf58258333fe6eb62ff2188a04883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Air jets</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter physics</topic><topic>Engineering Sciences</topic><topic>Flow control</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Genetic algorithms</topic><topic>Machine Learning</topic><topic>Mechanics</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks</topic><topic>Regular Article - Flowing Matter</topic><topic>Rotating stalls</topic><topic>Soft and Granular Matter</topic><topic>Statistics</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tip speed</topic><topic>Turbocompressors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elhawary, M. A.</creatorcontrib><creatorcontrib>Romanò, Francesco</creatorcontrib><creatorcontrib>Loiseau, Jean-Christophe</creatorcontrib><creatorcontrib>Dazin, Antoine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elhawary, M. A.</au><au>Romanò, Francesco</au><au>Loiseau, Jean-Christophe</au><au>Dazin, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for optimal flow control in an axial compressor</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>46</volume><issue>4</issue><spage>28</spage><epage>28</epage><pages>28-28</pages><artnum>28</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>Air jets for active flow control have proved effective in postponing the onset of stall phenomenon in axial compressors. In this paper, we use a combination of machine learning and genetic algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compressor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters on the surge margin improvement and power balance is modeled using two shallow neural networks. Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e., Ω = 3200 RPM , 4500 RPM and 6000 RPM . First, surge margin improvement and power balance are being maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from 1 ∘ to 11 ∘ . These outcomes point out a potential generalization of the control strategy applicable to other compressors.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37043075</pmid><doi>10.1140/epje/s10189-023-00284-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3560-8596</orcidid><orcidid>https://orcid.org/0000-0002-9511-4718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2023-04, Vol.46 (4), p.28-28, Article 28
issn 1292-8941
1292-895X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04164557v1
source Springer Nature - Complete Springer Journals
subjects Active control
Air jets
Biological and Medical Physics
Biophysics
Complex Fluids and Microfluidics
Complex Systems
Condensed matter physics
Engineering Sciences
Flow control
Fluid Dynamics
Fluid mechanics
Fluids mechanics
Genetic algorithms
Machine Learning
Mechanics
Nanotechnology
Neural networks
Optimization
Parameters
Physics
Physics and Astronomy
Polymer Sciences
Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks
Regular Article - Flowing Matter
Rotating stalls
Soft and Granular Matter
Statistics
Surfaces and Interfaces
Thin Films
Tip speed
Turbocompressors
title Machine learning for optimal flow control in an axial compressor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20optimal%20flow%20control%20in%20an%20axial%20compressor&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Elhawary,%20M.%20A.&rft.date=2023-04-01&rft.volume=46&rft.issue=4&rft.spage=28&rft.epage=28&rft.pages=28-28&rft.artnum=28&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-023-00284-9&rft_dat=%3Cproquest_hal_p%3E2800198965%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800198965&rft_id=info:pmid/37043075&rfr_iscdi=true