Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes

We report the results of a computational investigation that shed light on the catalyst structure–activity and selectivity relationships for our recently developed Rh­(I)-xantphos-catalyzed transfer C–H borylation of alkenes. Our study uncovered the influence that the ligand properties have on the fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organometallics 2022-07, Vol.41 (13), p.1649-1658
Hauptverfasser: Martínez, Sebastián, Dydio, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1658
container_issue 13
container_start_page 1649
container_title Organometallics
container_volume 41
creator Martínez, Sebastián
Dydio, Paweł
description We report the results of a computational investigation that shed light on the catalyst structure–activity and selectivity relationships for our recently developed Rh­(I)-xantphos-catalyzed transfer C–H borylation of alkenes. Our study uncovered the influence that the ligand properties have on the free energy surfaces of the reactions catalyzed by a series of Rh catalysts bearing derivatives of the xantphos ligand with varied electronic features and steric demands. We present the full reaction profiles and provide a closer look on how different modifications to the ligand structure influence each step of the catalytic reaction. We observed that the increased steric effects have a large effect on the free energy surfaces, increasing the energy barriers, thereby decreasing the rates of the reaction. In turn, the electronic effects can stabilize key transition states and destabilize crucial intermediates, such as the resting of the catalyst, thus accelerating the overall catalytic process. Additionally, the electronic effects can modify the relative rates of the alternative pathways and therefore affect the selectivity preferences. In general, our study provides guidelines for the rational development of new catalysts to further enhance the performance of the catalytic system and address the remaining challenges.
doi_str_mv 10.1021/acs.organomet.2c00148
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04159554v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a705763543</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-7ba4b776f81065547695ac962c803ba6e9b206276e87a3302a95300305ae561f3</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EEuXxCUhewiJlbMdOsyzlUaRKSFDW0TSdkEBIkO0glRX_wJav40twFGDLajSPc0e6l7EjAWMBUpxi7satfcCmfSY_ljmAiCdbbCS0hMhALLbZCGRiokQptcv2nHsEAJMoOWKf59S4ym_4ZdfkvmobrPmypNZu-J3v1hU53hbcl8Rn6LHeOB_mtst9Z-nr_WMamNcex2bN76im3_6WauzlXFm9OF41_LY8vj6JBpE3WvOlxcYVZPksyMz5Wfg4EP2_af1EDbkDtlNg7ejwp-6z-8uL5WweLW6urmfTRYRKxj5KVhivksQUEwFG6zgxqcY8NTKfgFqhoXQlwQQDaJKgUiAx1QpAgUbSRhRqn50MuiXW2YutntFusharbD5dZP0seKjToPwqwq0ebnPbOmep-AMEZH0cWYgj-4sj-4kjcGLg-vVj29ngtPuH-QbK6ZYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes</title><source>ACS Publications</source><creator>Martínez, Sebastián ; Dydio, Paweł</creator><creatorcontrib>Martínez, Sebastián ; Dydio, Paweł</creatorcontrib><description>We report the results of a computational investigation that shed light on the catalyst structure–activity and selectivity relationships for our recently developed Rh­(I)-xantphos-catalyzed transfer C–H borylation of alkenes. Our study uncovered the influence that the ligand properties have on the free energy surfaces of the reactions catalyzed by a series of Rh catalysts bearing derivatives of the xantphos ligand with varied electronic features and steric demands. We present the full reaction profiles and provide a closer look on how different modifications to the ligand structure influence each step of the catalytic reaction. We observed that the increased steric effects have a large effect on the free energy surfaces, increasing the energy barriers, thereby decreasing the rates of the reaction. In turn, the electronic effects can stabilize key transition states and destabilize crucial intermediates, such as the resting of the catalyst, thus accelerating the overall catalytic process. Additionally, the electronic effects can modify the relative rates of the alternative pathways and therefore affect the selectivity preferences. In general, our study provides guidelines for the rational development of new catalysts to further enhance the performance of the catalytic system and address the remaining challenges.</description><identifier>ISSN: 0276-7333</identifier><identifier>EISSN: 1520-6041</identifier><identifier>DOI: 10.1021/acs.organomet.2c00148</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences</subject><ispartof>Organometallics, 2022-07, Vol.41 (13), p.1649-1658</ispartof><rights>2022 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a324t-7ba4b776f81065547695ac962c803ba6e9b206276e87a3302a95300305ae561f3</cites><orcidid>0000-0001-5095-4943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.organomet.2c00148$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.organomet.2c00148$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04159554$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez, Sebastián</creatorcontrib><creatorcontrib>Dydio, Paweł</creatorcontrib><title>Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes</title><title>Organometallics</title><addtitle>Organometallics</addtitle><description>We report the results of a computational investigation that shed light on the catalyst structure–activity and selectivity relationships for our recently developed Rh­(I)-xantphos-catalyzed transfer C–H borylation of alkenes. Our study uncovered the influence that the ligand properties have on the free energy surfaces of the reactions catalyzed by a series of Rh catalysts bearing derivatives of the xantphos ligand with varied electronic features and steric demands. We present the full reaction profiles and provide a closer look on how different modifications to the ligand structure influence each step of the catalytic reaction. We observed that the increased steric effects have a large effect on the free energy surfaces, increasing the energy barriers, thereby decreasing the rates of the reaction. In turn, the electronic effects can stabilize key transition states and destabilize crucial intermediates, such as the resting of the catalyst, thus accelerating the overall catalytic process. Additionally, the electronic effects can modify the relative rates of the alternative pathways and therefore affect the selectivity preferences. In general, our study provides guidelines for the rational development of new catalysts to further enhance the performance of the catalytic system and address the remaining challenges.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><issn>0276-7333</issn><issn>1520-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0EEuXxCUhewiJlbMdOsyzlUaRKSFDW0TSdkEBIkO0glRX_wJav40twFGDLajSPc0e6l7EjAWMBUpxi7satfcCmfSY_ljmAiCdbbCS0hMhALLbZCGRiokQptcv2nHsEAJMoOWKf59S4ym_4ZdfkvmobrPmypNZu-J3v1hU53hbcl8Rn6LHeOB_mtst9Z-nr_WMamNcex2bN76im3_6WauzlXFm9OF41_LY8vj6JBpE3WvOlxcYVZPksyMz5Wfg4EP2_af1EDbkDtlNg7ejwp-6z-8uL5WweLW6urmfTRYRKxj5KVhivksQUEwFG6zgxqcY8NTKfgFqhoXQlwQQDaJKgUiAx1QpAgUbSRhRqn50MuiXW2YutntFusharbD5dZP0seKjToPwqwq0ebnPbOmep-AMEZH0cWYgj-4sj-4kjcGLg-vVj29ngtPuH-QbK6ZYg</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Martínez, Sebastián</creator><creator>Dydio, Paweł</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5095-4943</orcidid></search><sort><creationdate>20220711</creationdate><title>Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes</title><author>Martínez, Sebastián ; Dydio, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-7ba4b776f81065547695ac962c803ba6e9b206276e87a3302a95300305ae561f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, Sebastián</creatorcontrib><creatorcontrib>Dydio, Paweł</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Organometallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, Sebastián</au><au>Dydio, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes</atitle><jtitle>Organometallics</jtitle><addtitle>Organometallics</addtitle><date>2022-07-11</date><risdate>2022</risdate><volume>41</volume><issue>13</issue><spage>1649</spage><epage>1658</epage><pages>1649-1658</pages><issn>0276-7333</issn><eissn>1520-6041</eissn><abstract>We report the results of a computational investigation that shed light on the catalyst structure–activity and selectivity relationships for our recently developed Rh­(I)-xantphos-catalyzed transfer C–H borylation of alkenes. Our study uncovered the influence that the ligand properties have on the free energy surfaces of the reactions catalyzed by a series of Rh catalysts bearing derivatives of the xantphos ligand with varied electronic features and steric demands. We present the full reaction profiles and provide a closer look on how different modifications to the ligand structure influence each step of the catalytic reaction. We observed that the increased steric effects have a large effect on the free energy surfaces, increasing the energy barriers, thereby decreasing the rates of the reaction. In turn, the electronic effects can stabilize key transition states and destabilize crucial intermediates, such as the resting of the catalyst, thus accelerating the overall catalytic process. Additionally, the electronic effects can modify the relative rates of the alternative pathways and therefore affect the selectivity preferences. In general, our study provides guidelines for the rational development of new catalysts to further enhance the performance of the catalytic system and address the remaining challenges.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.organomet.2c00148</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5095-4943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0276-7333
ispartof Organometallics, 2022-07, Vol.41 (13), p.1649-1658
issn 0276-7333
1520-6041
language eng
recordid cdi_hal_primary_oai_HAL_hal_04159554v1
source ACS Publications
subjects Catalysis
Chemical Sciences
title Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20Functional%20Theory%20Studies%20of%20the%20Catalyst%20Structure%E2%80%93Activity%20and%20Selectivity%20Relationships%20in%20Rh(I)-Catalyzed%20Transfer%20C%E2%80%93H%20Borylation%20of%20Alkenes&rft.jtitle=Organometallics&rft.au=Marti%CC%81nez,%20Sebastia%CC%81n&rft.date=2022-07-11&rft.volume=41&rft.issue=13&rft.spage=1649&rft.epage=1658&rft.pages=1649-1658&rft.issn=0276-7333&rft.eissn=1520-6041&rft_id=info:doi/10.1021/acs.organomet.2c00148&rft_dat=%3Cacs_hal_p%3Ea705763543%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true