Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol

Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase ( ldh ) genes increased the ethanol production fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2012-09, Vol.34 (9), p.1651-1657
Hauptverfasser: Rana, N. F., Gente, S., Rincé, A., Auffray, Y., Laplace, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1657
container_issue 9
container_start_page 1651
container_title Biotechnology letters
container_volume 34
creator Rana, N. F.
Gente, S.
Rincé, A.
Auffray, Y.
Laplace, J. M.
description Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase ( ldh ) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase ( pdc ) gene (from Sarcina ventriculi or Clostridium acetobutylicum ) in place ldh1 . When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg −1 of pdc specific activity, respectively. Highest activity (47 U mg −1 ) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.
doi_str_mv 10.1007/s10529-012-0964-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04158326v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093471332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-43b90a0a29de1dd89cc0f7293cf0152f2182eaf965bdaf45fc39912b7acdeca63</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7jj6A7xIQAQ9tKaS7mRyXJZ1VxjwoueQzsdMlp5kTLqX9eg_N22P6wcInhLqfarqLV6EngN5C4SIdwVIR2VDgDZE8ra5e4BW0AnWcCH4Q7Qi0ELTtZKeoSel3BBCpCDiMTqjlNMNoXSFvl256MZg8CHZ4IPRY0ixYB0tDnHMyU5mruDk8d6NLqch7dJU8NEavKutpWL4Ms6KScZUxWtn9BDqJ2UcxoKn4mbo-MewPiQ37nVMw1P0yOuhuGend40-v7_8dHHdbD9efbg43zamY93YtKyXRBNNpXVg7UYaQ7ygkhlPoKOewoY67SXveqt923nDpATaC21sNcTZGr1Z5u71oI45HHT-qpIO6vp8q-YaaaHbMMpvobKvF7aa_jK5MqpDKMYNg46uXq-ASNYKYIz-B8oE55S1rKIv_0Jv0pRjPfoHxYABmXfDQpmcSsnO35sFoubY1RK7qrGrOXZ1V3tenCZP_cHZ-46fOVfg1QnQpabjs44mlF8cpwCyHrVGdOFKleLO5d8t_mv7d7L5xig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037313101</pqid></control><display><type>article</type><title>Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Rana, N. F. ; Gente, S. ; Rincé, A. ; Auffray, Y. ; Laplace, J. M.</creator><creatorcontrib>Rana, N. F. ; Gente, S. ; Rincé, A. ; Auffray, Y. ; Laplace, J. M.</creatorcontrib><description>Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase ( ldh ) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase ( pdc ) gene (from Sarcina ventriculi or Clostridium acetobutylicum ) in place ldh1 . When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg −1 of pdc specific activity, respectively. Highest activity (47 U mg −1 ) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-012-0964-x</identifier><identifier>PMID: 22628022</identifier><identifier>CODEN: BILED3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acetic Acid - metabolism ; Applied Microbiology ; Bacteria ; Biochemistry ; Biodiesel fuels ; Biofuels ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; Carbon sources ; Clostridium acetobutylicum ; Clostridium acetobutylicum - enzymology ; Clostridium acetobutylicum - genetics ; Dehydrogenase ; Enterococcus faecalis ; Enterococcus faecalis - genetics ; Enterococcus faecalis - metabolism ; Ethanol ; Ethanol - metabolism ; Fermentation ; Formates - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Bacterial ; Gene Knockout Techniques ; Genetic engineering ; Glucose - metabolism ; Hydro-Lyases - genetics ; Hydro-Lyases - metabolism ; Lactose - metabolism ; Life Sciences ; Metabolic Engineering ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Microbiology ; Organisms, Genetically Modified ; Original Research Paper ; Pyruvate Dehydrogenase Complex - genetics ; Pyruvate Dehydrogenase Complex - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sarcina</subject><ispartof>Biotechnology letters, 2012-09, Vol.34 (9), p.1651-1657</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-43b90a0a29de1dd89cc0f7293cf0152f2182eaf965bdaf45fc39912b7acdeca63</citedby><cites>FETCH-LOGICAL-c535t-43b90a0a29de1dd89cc0f7293cf0152f2182eaf965bdaf45fc39912b7acdeca63</cites><orcidid>0000-0002-0165-7288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-012-0964-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-012-0964-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26211909$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22628022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-04158326$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rana, N. F.</creatorcontrib><creatorcontrib>Gente, S.</creatorcontrib><creatorcontrib>Rincé, A.</creatorcontrib><creatorcontrib>Auffray, Y.</creatorcontrib><creatorcontrib>Laplace, J. M.</creatorcontrib><title>Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase ( ldh ) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase ( pdc ) gene (from Sarcina ventriculi or Clostridium acetobutylicum ) in place ldh1 . When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg −1 of pdc specific activity, respectively. Highest activity (47 U mg −1 ) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.</description><subject>Acetic Acid - metabolism</subject><subject>Applied Microbiology</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon sources</subject><subject>Clostridium acetobutylicum</subject><subject>Clostridium acetobutylicum - enzymology</subject><subject>Clostridium acetobutylicum - genetics</subject><subject>Dehydrogenase</subject><subject>Enterococcus faecalis</subject><subject>Enterococcus faecalis - genetics</subject><subject>Enterococcus faecalis - metabolism</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Formates - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Knockout Techniques</subject><subject>Genetic engineering</subject><subject>Glucose - metabolism</subject><subject>Hydro-Lyases - genetics</subject><subject>Hydro-Lyases - metabolism</subject><subject>Lactose - metabolism</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbiology</subject><subject>Organisms, Genetically Modified</subject><subject>Original Research Paper</subject><subject>Pyruvate Dehydrogenase Complex - genetics</subject><subject>Pyruvate Dehydrogenase Complex - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sarcina</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU2LFDEQhoMo7jj6A7xIQAQ9tKaS7mRyXJZ1VxjwoueQzsdMlp5kTLqX9eg_N22P6wcInhLqfarqLV6EngN5C4SIdwVIR2VDgDZE8ra5e4BW0AnWcCH4Q7Qi0ELTtZKeoSel3BBCpCDiMTqjlNMNoXSFvl256MZg8CHZ4IPRY0ixYB0tDnHMyU5mruDk8d6NLqch7dJU8NEavKutpWL4Ms6KScZUxWtn9BDqJ2UcxoKn4mbo-MewPiQ37nVMw1P0yOuhuGend40-v7_8dHHdbD9efbg43zamY93YtKyXRBNNpXVg7UYaQ7ygkhlPoKOewoY67SXveqt923nDpATaC21sNcTZGr1Z5u71oI45HHT-qpIO6vp8q-YaaaHbMMpvobKvF7aa_jK5MqpDKMYNg46uXq-ASNYKYIz-B8oE55S1rKIv_0Jv0pRjPfoHxYABmXfDQpmcSsnO35sFoubY1RK7qrGrOXZ1V3tenCZP_cHZ-46fOVfg1QnQpabjs44mlF8cpwCyHrVGdOFKleLO5d8t_mv7d7L5xig</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Rana, N. F.</creator><creator>Gente, S.</creator><creator>Rincé, A.</creator><creator>Auffray, Y.</creator><creator>Laplace, J. M.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0165-7288</orcidid></search><sort><creationdate>20120901</creationdate><title>Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol</title><author>Rana, N. F. ; Gente, S. ; Rincé, A. ; Auffray, Y. ; Laplace, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-43b90a0a29de1dd89cc0f7293cf0152f2182eaf965bdaf45fc39912b7acdeca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetic Acid - metabolism</topic><topic>Applied Microbiology</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon sources</topic><topic>Clostridium acetobutylicum</topic><topic>Clostridium acetobutylicum - enzymology</topic><topic>Clostridium acetobutylicum - genetics</topic><topic>Dehydrogenase</topic><topic>Enterococcus faecalis</topic><topic>Enterococcus faecalis - genetics</topic><topic>Enterococcus faecalis - metabolism</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Formates - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Knockout Techniques</topic><topic>Genetic engineering</topic><topic>Glucose - metabolism</topic><topic>Hydro-Lyases - genetics</topic><topic>Hydro-Lyases - metabolism</topic><topic>Lactose - metabolism</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbiology</topic><topic>Organisms, Genetically Modified</topic><topic>Original Research Paper</topic><topic>Pyruvate Dehydrogenase Complex - genetics</topic><topic>Pyruvate Dehydrogenase Complex - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sarcina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, N. F.</creatorcontrib><creatorcontrib>Gente, S.</creatorcontrib><creatorcontrib>Rincé, A.</creatorcontrib><creatorcontrib>Auffray, Y.</creatorcontrib><creatorcontrib>Laplace, J. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, N. F.</au><au>Gente, S.</au><au>Rincé, A.</au><au>Auffray, Y.</au><au>Laplace, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>34</volume><issue>9</issue><spage>1651</spage><epage>1657</epage><pages>1651-1657</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><coden>BILED3</coden><abstract>Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase ( ldh ) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase ( pdc ) gene (from Sarcina ventriculi or Clostridium acetobutylicum ) in place ldh1 . When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg −1 of pdc specific activity, respectively. Highest activity (47 U mg −1 ) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>22628022</pmid><doi>10.1007/s10529-012-0964-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0165-7288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2012-09, Vol.34 (9), p.1651-1657
issn 0141-5492
1573-6776
language eng
recordid cdi_hal_primary_oai_HAL_hal_04158326v1
source MEDLINE; SpringerNature Journals
subjects Acetic Acid - metabolism
Applied Microbiology
Bacteria
Biochemistry
Biodiesel fuels
Biofuels
Biological and medical sciences
Biomedical and Life Sciences
Biotechnology
Carbon sources
Clostridium acetobutylicum
Clostridium acetobutylicum - enzymology
Clostridium acetobutylicum - genetics
Dehydrogenase
Enterococcus faecalis
Enterococcus faecalis - genetics
Enterococcus faecalis - metabolism
Ethanol
Ethanol - metabolism
Fermentation
Formates - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Gene Knockout Techniques
Genetic engineering
Glucose - metabolism
Hydro-Lyases - genetics
Hydro-Lyases - metabolism
Lactose - metabolism
Life Sciences
Metabolic Engineering
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microbiology
Organisms, Genetically Modified
Original Research Paper
Pyruvate Dehydrogenase Complex - genetics
Pyruvate Dehydrogenase Complex - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sarcina
title Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20modifications%20and%20introduction%20of%20heterologous%20pdc%20genes%20in%20Enterococcus%20faecalis%20for%20its%20use%20in%20production%20of%20bioethanol&rft.jtitle=Biotechnology%20letters&rft.au=Rana,%20N.%20F.&rft.date=2012-09-01&rft.volume=34&rft.issue=9&rft.spage=1651&rft.epage=1657&rft.pages=1651-1657&rft.issn=0141-5492&rft.eissn=1573-6776&rft.coden=BILED3&rft_id=info:doi/10.1007/s10529-012-0964-x&rft_dat=%3Cproquest_hal_p%3E1093471332%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037313101&rft_id=info:pmid/22628022&rfr_iscdi=true