Unsteady drag force on an immersed sphere oscillating near a wall
The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extra...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-12, Vol.977, Article A21 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 977 |
creator | Zhang, Zaicheng Bertin, Vincent Essink, Martin H. Zhang, Hao Fares, Nicolas Shen, Zaiyi Bickel, Thomas Salez, Thomas Maali, Abdelhamid |
description | The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number. |
doi_str_mv | 10.1017/jfm.2023.987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04158163v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_987</cupid><sourcerecordid>2901403874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d94c84bf37ecce901884b851a9375d16eddeffe74d9a37c24f8d6f53819f62d93</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWD9u_oCAJ8FdM0l2kxxLUSsUvNhzSPPRbtmPmrRK_70pLXrxNMzwzDvDg9AdkBIIiKd16EpKKCuVFGdoBLxWhah5dY5GhFBaAFByia5SWhMCjCgxQuN5n7beuD120SxxGKL1eOix6XHTdT4m73DarHzM02SbtjXbpl_i3puIDf42bXuDLoJpk7891Ws0f3n-mEyL2fvr22Q8KywTfFs4xa3ki8CEt9YrAjJ3sgKjmKgc1N45H4IX3CnDhKU8SFeHiklQoaZOsWv0cMxdmVZvYtOZuNeDafR0PNOHGeFQSajZF2T2_shu4vC582mr18Mu9vk9TfNpTpgUPFOPR8rGIaXow28sEH0QqrNQfRCqs9CMlyfcdIvYuKX_S_134Qf-xXaO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901403874</pqid></control><display><type>article</type><title>Unsteady drag force on an immersed sphere oscillating near a wall</title><source>Cambridge Full Journal Collection</source><creator>Zhang, Zaicheng ; Bertin, Vincent ; Essink, Martin H. ; Zhang, Hao ; Fares, Nicolas ; Shen, Zaiyi ; Bickel, Thomas ; Salez, Thomas ; Maali, Abdelhamid</creator><creatorcontrib>Zhang, Zaicheng ; Bertin, Vincent ; Essink, Martin H. ; Zhang, Hao ; Fares, Nicolas ; Shen, Zaiyi ; Bickel, Thomas ; Salez, Thomas ; Maali, Abdelhamid</creatorcontrib><description>The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.987</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic methods ; Atomic force microscopy ; Condensed Matter ; Drag ; Experiments ; Finite element method ; Fluid Dynamics ; Fluid mechanics ; Hydrodynamics ; JFM Papers ; Mathematical analysis ; Mechanics ; Microscopy ; Physics ; Resonance ; Reynolds number ; Soft Condensed Matter ; Thermal noise ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2023-12, Vol.977, Article A21</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d94c84bf37ecce901884b851a9375d16eddeffe74d9a37c24f8d6f53819f62d93</citedby><cites>FETCH-LOGICAL-c374t-d94c84bf37ecce901884b851a9375d16eddeffe74d9a37c24f8d6f53819f62d93</cites><orcidid>0000-0002-8351-6824 ; 0000-0001-6111-8721 ; 0000-0001-7472-1597 ; 0000-0002-9459-6081 ; 0000-0002-3139-8846 ; 0000-0003-0493-5164 ; 0000-0003-0987-7629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023009874/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04158163$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zaicheng</creatorcontrib><creatorcontrib>Bertin, Vincent</creatorcontrib><creatorcontrib>Essink, Martin H.</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Fares, Nicolas</creatorcontrib><creatorcontrib>Shen, Zaiyi</creatorcontrib><creatorcontrib>Bickel, Thomas</creatorcontrib><creatorcontrib>Salez, Thomas</creatorcontrib><creatorcontrib>Maali, Abdelhamid</creatorcontrib><title>Unsteady drag force on an immersed sphere oscillating near a wall</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number.</description><subject>Asymptotic methods</subject><subject>Atomic force microscopy</subject><subject>Condensed Matter</subject><subject>Drag</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>JFM Papers</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Microscopy</subject><subject>Physics</subject><subject>Resonance</subject><subject>Reynolds number</subject><subject>Soft Condensed Matter</subject><subject>Thermal noise</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWD9u_oCAJ8FdM0l2kxxLUSsUvNhzSPPRbtmPmrRK_70pLXrxNMzwzDvDg9AdkBIIiKd16EpKKCuVFGdoBLxWhah5dY5GhFBaAFByia5SWhMCjCgxQuN5n7beuD120SxxGKL1eOix6XHTdT4m73DarHzM02SbtjXbpl_i3puIDf42bXuDLoJpk7891Ws0f3n-mEyL2fvr22Q8KywTfFs4xa3ki8CEt9YrAjJ3sgKjmKgc1N45H4IX3CnDhKU8SFeHiklQoaZOsWv0cMxdmVZvYtOZuNeDafR0PNOHGeFQSajZF2T2_shu4vC582mr18Mu9vk9TfNpTpgUPFOPR8rGIaXow28sEH0QqrNQfRCqs9CMlyfcdIvYuKX_S_134Qf-xXaO</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Zhang, Zaicheng</creator><creator>Bertin, Vincent</creator><creator>Essink, Martin H.</creator><creator>Zhang, Hao</creator><creator>Fares, Nicolas</creator><creator>Shen, Zaiyi</creator><creator>Bickel, Thomas</creator><creator>Salez, Thomas</creator><creator>Maali, Abdelhamid</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8351-6824</orcidid><orcidid>https://orcid.org/0000-0001-6111-8721</orcidid><orcidid>https://orcid.org/0000-0001-7472-1597</orcidid><orcidid>https://orcid.org/0000-0002-9459-6081</orcidid><orcidid>https://orcid.org/0000-0002-3139-8846</orcidid><orcidid>https://orcid.org/0000-0003-0493-5164</orcidid><orcidid>https://orcid.org/0000-0003-0987-7629</orcidid></search><sort><creationdate>20231214</creationdate><title>Unsteady drag force on an immersed sphere oscillating near a wall</title><author>Zhang, Zaicheng ; Bertin, Vincent ; Essink, Martin H. ; Zhang, Hao ; Fares, Nicolas ; Shen, Zaiyi ; Bickel, Thomas ; Salez, Thomas ; Maali, Abdelhamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d94c84bf37ecce901884b851a9375d16eddeffe74d9a37c24f8d6f53819f62d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Atomic force microscopy</topic><topic>Condensed Matter</topic><topic>Drag</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>JFM Papers</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Microscopy</topic><topic>Physics</topic><topic>Resonance</topic><topic>Reynolds number</topic><topic>Soft Condensed Matter</topic><topic>Thermal noise</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zaicheng</creatorcontrib><creatorcontrib>Bertin, Vincent</creatorcontrib><creatorcontrib>Essink, Martin H.</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Fares, Nicolas</creatorcontrib><creatorcontrib>Shen, Zaiyi</creatorcontrib><creatorcontrib>Bickel, Thomas</creatorcontrib><creatorcontrib>Salez, Thomas</creatorcontrib><creatorcontrib>Maali, Abdelhamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zaicheng</au><au>Bertin, Vincent</au><au>Essink, Martin H.</au><au>Zhang, Hao</au><au>Fares, Nicolas</au><au>Shen, Zaiyi</au><au>Bickel, Thomas</au><au>Salez, Thomas</au><au>Maali, Abdelhamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady drag force on an immersed sphere oscillating near a wall</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>977</volume><artnum>A21</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed experimentally, theoretically and numerically. The experiments are performed by using colloidal-probe atomic force microscopy in thermal noise mode. The resonance frequencies and quality factors are extracted from the measurement of the power spectrum density of the probe oscillation for a broad range of gap distances and Womersley numbers. The shift in the resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to a negative shift is observed as the Womersley number increases. In order to rationalize the results, the confined unsteady Stokes equation is solved numerically using a finite-element method, as well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag acting on the sphere are obtained and agree well with the experimental results. All together, the experimental, theoretical and numerical results show that the hydrodynamic force felt by an immersed sphere oscillating near a wall is highly dependent on the Womersley number.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.987</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8351-6824</orcidid><orcidid>https://orcid.org/0000-0001-6111-8721</orcidid><orcidid>https://orcid.org/0000-0001-7472-1597</orcidid><orcidid>https://orcid.org/0000-0002-9459-6081</orcidid><orcidid>https://orcid.org/0000-0002-3139-8846</orcidid><orcidid>https://orcid.org/0000-0003-0493-5164</orcidid><orcidid>https://orcid.org/0000-0003-0987-7629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-12, Vol.977, Article A21 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04158163v1 |
source | Cambridge Full Journal Collection |
subjects | Asymptotic methods Atomic force microscopy Condensed Matter Drag Experiments Finite element method Fluid Dynamics Fluid mechanics Hydrodynamics JFM Papers Mathematical analysis Mechanics Microscopy Physics Resonance Reynolds number Soft Condensed Matter Thermal noise Viscosity |
title | Unsteady drag force on an immersed sphere oscillating near a wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20drag%20force%20on%20an%20immersed%20sphere%20oscillating%20near%20a%20wall&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zhang,%20Zaicheng&rft.date=2023-12-14&rft.volume=977&rft.artnum=A21&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.987&rft_dat=%3Cproquest_hal_p%3E2901403874%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901403874&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_987&rfr_iscdi=true |