Analysis of membrane instability with a two-parameter extended system

Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2022-08, Vol.249, p.111693, Article 111693
Hauptverfasser: Huang, Qun, Huang, Wei, Yang, Jie, Potier-Ferry, Michel, Belouettar, Salim, Hu, Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111693
container_title International journal of solids and structures
container_volume 249
creator Huang, Qun
Huang, Wei
Yang, Jie
Potier-Ferry, Michel
Belouettar, Salim
Hu, Heng
description Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.
doi_str_mv 10.1016/j.ijsolstr.2022.111693
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04146729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768322002049</els_id><sourcerecordid>2685096166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BSm4ctHxJWnTZOcg6ggDbnQd0vSVSenHmGRG59_boerW1YPHuRfuIeSawoICFXfNwjVhaEP0CwaMLSilQvETMqOyUCmjmTglMwAGaSEkPycXITQAkHEFM_K47E17CC4kQ5102JXe9Ji4PkRTutbFQ_Lp4iYxSfwc0q3xpsOIPsGviH2FVRIOIWJ3Sc5q0wa8-rlz8v70-PawStevzy8Py3VqeZHF1CIvpYHMcFlVhtOSSZAsp7I2tuSWKiiKKmeFzAWzleSZypVlOWSgJPDa8Dm5nXo3ptVb7zrjD3owTq-Wa338QTbOLZja05G9mditHz52GKJuhp0f1wbNhMxBCSrESImJsn4IwWP9V0tBH_XqRv_q1Ue9etI7Bu-nII579w69DtZhb7FyHm3U1eD-q_gGMSCFkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685096166</pqid></control><display><type>article</type><title>Analysis of membrane instability with a two-parameter extended system</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, Qun ; Huang, Wei ; Yang, Jie ; Potier-Ferry, Michel ; Belouettar, Salim ; Hu, Heng</creator><creatorcontrib>Huang, Qun ; Huang, Wei ; Yang, Jie ; Potier-Ferry, Michel ; Belouettar, Salim ; Hu, Heng</creatorcontrib><description>Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2022.111693</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Bifurcations ; Buckling ; Extended system ; Fourier-based reduced model ; Landau-Ginzburg equations ; Mathematical models ; Mechanics ; Mechanics of materials ; Membrane ; Membranes ; Parameters ; Physics ; Stability analysis ; Wavelength ; Wrinkling</subject><ispartof>International journal of solids and structures, 2022-08, Vol.249, p.111693, Article 111693</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</citedby><cites>FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</cites><orcidid>0000-0002-0785-2092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2022.111693$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-04146729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Qun</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><creatorcontrib>Belouettar, Salim</creatorcontrib><creatorcontrib>Hu, Heng</creatorcontrib><title>Analysis of membrane instability with a two-parameter extended system</title><title>International journal of solids and structures</title><description>Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Buckling</subject><subject>Extended system</subject><subject>Fourier-based reduced model</subject><subject>Landau-Ginzburg equations</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Parameters</subject><subject>Physics</subject><subject>Stability analysis</subject><subject>Wavelength</subject><subject>Wrinkling</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BSm4ctHxJWnTZOcg6ggDbnQd0vSVSenHmGRG59_boerW1YPHuRfuIeSawoICFXfNwjVhaEP0CwaMLSilQvETMqOyUCmjmTglMwAGaSEkPycXITQAkHEFM_K47E17CC4kQ5102JXe9Ji4PkRTutbFQ_Lp4iYxSfwc0q3xpsOIPsGviH2FVRIOIWJ3Sc5q0wa8-rlz8v70-PawStevzy8Py3VqeZHF1CIvpYHMcFlVhtOSSZAsp7I2tuSWKiiKKmeFzAWzleSZypVlOWSgJPDa8Dm5nXo3ptVb7zrjD3owTq-Wa338QTbOLZja05G9mditHz52GKJuhp0f1wbNhMxBCSrESImJsn4IwWP9V0tBH_XqRv_q1Ue9etI7Bu-nII579w69DtZhb7FyHm3U1eD-q_gGMSCFkw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huang, Qun</creator><creator>Huang, Wei</creator><creator>Yang, Jie</creator><creator>Potier-Ferry, Michel</creator><creator>Belouettar, Salim</creator><creator>Hu, Heng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0785-2092</orcidid></search><sort><creationdate>20220801</creationdate><title>Analysis of membrane instability with a two-parameter extended system</title><author>Huang, Qun ; Huang, Wei ; Yang, Jie ; Potier-Ferry, Michel ; Belouettar, Salim ; Hu, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Buckling</topic><topic>Extended system</topic><topic>Fourier-based reduced model</topic><topic>Landau-Ginzburg equations</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Parameters</topic><topic>Physics</topic><topic>Stability analysis</topic><topic>Wavelength</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qun</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><creatorcontrib>Belouettar, Salim</creatorcontrib><creatorcontrib>Hu, Heng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qun</au><au>Huang, Wei</au><au>Yang, Jie</au><au>Potier-Ferry, Michel</au><au>Belouettar, Salim</au><au>Hu, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of membrane instability with a two-parameter extended system</atitle><jtitle>International journal of solids and structures</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>249</volume><spage>111693</spage><pages>111693-</pages><artnum>111693</artnum><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2022.111693</doi><orcidid>https://orcid.org/0000-0002-0785-2092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2022-08, Vol.249, p.111693, Article 111693
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_04146729v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Bifurcations
Buckling
Extended system
Fourier-based reduced model
Landau-Ginzburg equations
Mathematical models
Mechanics
Mechanics of materials
Membrane
Membranes
Parameters
Physics
Stability analysis
Wavelength
Wrinkling
title Analysis of membrane instability with a two-parameter extended system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20membrane%20instability%20with%20a%20two-parameter%20extended%20system&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Huang,%20Qun&rft.date=2022-08-01&rft.volume=249&rft.spage=111693&rft.pages=111693-&rft.artnum=111693&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2022.111693&rft_dat=%3Cproquest_hal_p%3E2685096166%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685096166&rft_id=info:pmid/&rft_els_id=S0020768322002049&rfr_iscdi=true