Analysis of membrane instability with a two-parameter extended system
Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown th...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2022-08, Vol.249, p.111693, Article 111693 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111693 |
container_title | International journal of solids and structures |
container_volume | 249 |
creator | Huang, Qun Huang, Wei Yang, Jie Potier-Ferry, Michel Belouettar, Salim Hu, Heng |
description | Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters. |
doi_str_mv | 10.1016/j.ijsolstr.2022.111693 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04146729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768322002049</els_id><sourcerecordid>2685096166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BSm4ctHxJWnTZOcg6ggDbnQd0vSVSenHmGRG59_boerW1YPHuRfuIeSawoICFXfNwjVhaEP0CwaMLSilQvETMqOyUCmjmTglMwAGaSEkPycXITQAkHEFM_K47E17CC4kQ5102JXe9Ji4PkRTutbFQ_Lp4iYxSfwc0q3xpsOIPsGviH2FVRIOIWJ3Sc5q0wa8-rlz8v70-PawStevzy8Py3VqeZHF1CIvpYHMcFlVhtOSSZAsp7I2tuSWKiiKKmeFzAWzleSZypVlOWSgJPDa8Dm5nXo3ptVb7zrjD3owTq-Wa338QTbOLZja05G9mditHz52GKJuhp0f1wbNhMxBCSrESImJsn4IwWP9V0tBH_XqRv_q1Ue9etI7Bu-nII579w69DtZhb7FyHm3U1eD-q_gGMSCFkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685096166</pqid></control><display><type>article</type><title>Analysis of membrane instability with a two-parameter extended system</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Huang, Qun ; Huang, Wei ; Yang, Jie ; Potier-Ferry, Michel ; Belouettar, Salim ; Hu, Heng</creator><creatorcontrib>Huang, Qun ; Huang, Wei ; Yang, Jie ; Potier-Ferry, Michel ; Belouettar, Salim ; Hu, Heng</creatorcontrib><description>Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2022.111693</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Bifurcations ; Buckling ; Extended system ; Fourier-based reduced model ; Landau-Ginzburg equations ; Mathematical models ; Mechanics ; Mechanics of materials ; Membrane ; Membranes ; Parameters ; Physics ; Stability analysis ; Wavelength ; Wrinkling</subject><ispartof>International journal of solids and structures, 2022-08, Vol.249, p.111693, Article 111693</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</citedby><cites>FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</cites><orcidid>0000-0002-0785-2092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2022.111693$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-04146729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Qun</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><creatorcontrib>Belouettar, Salim</creatorcontrib><creatorcontrib>Hu, Heng</creatorcontrib><title>Analysis of membrane instability with a two-parameter extended system</title><title>International journal of solids and structures</title><description>Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Buckling</subject><subject>Extended system</subject><subject>Fourier-based reduced model</subject><subject>Landau-Ginzburg equations</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Parameters</subject><subject>Physics</subject><subject>Stability analysis</subject><subject>Wavelength</subject><subject>Wrinkling</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BSm4ctHxJWnTZOcg6ggDbnQd0vSVSenHmGRG59_boerW1YPHuRfuIeSawoICFXfNwjVhaEP0CwaMLSilQvETMqOyUCmjmTglMwAGaSEkPycXITQAkHEFM_K47E17CC4kQ5102JXe9Ji4PkRTutbFQ_Lp4iYxSfwc0q3xpsOIPsGviH2FVRIOIWJ3Sc5q0wa8-rlz8v70-PawStevzy8Py3VqeZHF1CIvpYHMcFlVhtOSSZAsp7I2tuSWKiiKKmeFzAWzleSZypVlOWSgJPDa8Dm5nXo3ptVb7zrjD3owTq-Wa338QTbOLZja05G9mditHz52GKJuhp0f1wbNhMxBCSrESImJsn4IwWP9V0tBH_XqRv_q1Ue9etI7Bu-nII579w69DtZhb7FyHm3U1eD-q_gGMSCFkw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huang, Qun</creator><creator>Huang, Wei</creator><creator>Yang, Jie</creator><creator>Potier-Ferry, Michel</creator><creator>Belouettar, Salim</creator><creator>Hu, Heng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0785-2092</orcidid></search><sort><creationdate>20220801</creationdate><title>Analysis of membrane instability with a two-parameter extended system</title><author>Huang, Qun ; Huang, Wei ; Yang, Jie ; Potier-Ferry, Michel ; Belouettar, Salim ; Hu, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-ce3b8a04a38dda31b28082518facb3c19077d5278562cd834959c250409803fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Buckling</topic><topic>Extended system</topic><topic>Fourier-based reduced model</topic><topic>Landau-Ginzburg equations</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Parameters</topic><topic>Physics</topic><topic>Stability analysis</topic><topic>Wavelength</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qun</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Potier-Ferry, Michel</creatorcontrib><creatorcontrib>Belouettar, Salim</creatorcontrib><creatorcontrib>Hu, Heng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qun</au><au>Huang, Wei</au><au>Yang, Jie</au><au>Potier-Ferry, Michel</au><au>Belouettar, Salim</au><au>Hu, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of membrane instability with a two-parameter extended system</atitle><jtitle>International journal of solids and structures</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>249</volume><spage>111693</spage><pages>111693-</pages><artnum>111693</artnum><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Membrane instability typically exhibits small wavelength compared to the structural size, which often leads to numerical difficulties in computational efficiency and convergence problem. Recently, the Fourier-based reduced technique that is similar to the famous Ginzburg–Landau equation has shown the potential to overcome these difficulties. However, the wrinkling wavelength, an internal parameter, should be defined a priori, and how to determine it is still questionable. In this paper, we propose a two-parameter extended system attempting to lift this restriction. In this system, a Fourier-based reduced model with the wavelength as the second path-control parameter is firstly established, and then augmented by appending a constraint equation that characterizes the critical state (i.e., bifurcation point). The resulting critical equilibrium path, where the bifurcation points and the corresponding buckling modes depend on the wavelength, is tracked by the pseudo-arclength algorithm. Numerical results show that the proposed system is able to correctly and efficiently predict the wrinkling wavelength and buckling behavior of the membrane. This study could be extended to other similar models (e.g., amplitude equations) that characterize instability phenomena with internal parameters.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2022.111693</doi><orcidid>https://orcid.org/0000-0002-0785-2092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2022-08, Vol.249, p.111693, Article 111693 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04146729v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Bifurcations Buckling Extended system Fourier-based reduced model Landau-Ginzburg equations Mathematical models Mechanics Mechanics of materials Membrane Membranes Parameters Physics Stability analysis Wavelength Wrinkling |
title | Analysis of membrane instability with a two-parameter extended system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20membrane%20instability%20with%20a%20two-parameter%20extended%20system&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Huang,%20Qun&rft.date=2022-08-01&rft.volume=249&rft.spage=111693&rft.pages=111693-&rft.artnum=111693&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2022.111693&rft_dat=%3Cproquest_hal_p%3E2685096166%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685096166&rft_id=info:pmid/&rft_els_id=S0020768322002049&rfr_iscdi=true |