Exploring the opioid system by gene knockout
The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DO...
Gespeichert in:
Veröffentlicht in: | Progress in neurobiology 2002-04, Vol.66 (5), p.285-306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 5 |
container_start_page | 285 |
container_title | Progress in neurobiology |
container_volume | 66 |
creator | Kieffer, Brigitte L Gavériaux-Ruff, Claire |
description | The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations. |
doi_str_mv | 10.1016/s0301-0082(02)00008-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04145136v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71693476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh3NQ3Jx-BKUncWA1b5Im2VHGdMLAg3oOaZpudW1Tm1bctzdlYx4NLwR-PO8fHoSuAN8DBv7gMcUQYyzJLSZTHJ6M2QkaH-MROvf-M-ScYnqGRkAwJDATY3S3-GlK1xb1Ouo2NnJN4Yos8jvf2SpKd9Ha1jba1s5sXd9doNNcl95eHv4J-nhavM-X8er1-WX-uIoNk7KLrSaUpkIQ0FaaLKNcAqWQMcIZZSK1SaaFhRlNudEmMIyQ3FLCTJbkVAg6QdP93I0uVdMWlW53yulCLR9XasgwA5YA5d8Q2Js927Tuq7e-U1XhjS1LXVvXeyWAz8JS_i8IkiUYExLAZA-a1nnf2vx4AmA1-FZvg1g1iFU41OBbsdB3fVjQp5XN_roOsukv9d568A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18450022</pqid></control><display><type>article</type><title>Exploring the opioid system by gene knockout</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kieffer, Brigitte L ; Gavériaux-Ruff, Claire</creator><creatorcontrib>Kieffer, Brigitte L ; Gavériaux-Ruff, Claire</creatorcontrib><description>The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.</description><identifier>ISSN: 0301-0082</identifier><identifier>DOI: 10.1016/s0301-0082(02)00008-4</identifier><identifier>PMID: 12015197</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Animals ; Brain Chemistry - physiology ; Life Sciences ; Mice ; Mice, Knockout ; Neurons and Cognition ; Opioid Peptides - genetics ; Opioid Peptides - metabolism ; Receptors, Opioid - genetics ; Receptors, Opioid - metabolism</subject><ispartof>Progress in neurobiology, 2002-04, Vol.66 (5), p.285-306</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</citedby><cites>FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12015197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04145136$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kieffer, Brigitte L</creatorcontrib><creatorcontrib>Gavériaux-Ruff, Claire</creatorcontrib><title>Exploring the opioid system by gene knockout</title><title>Progress in neurobiology</title><addtitle>Prog Neurobiol</addtitle><description>The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.</description><subject>Animals</subject><subject>Brain Chemistry - physiology</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurons and Cognition</subject><subject>Opioid Peptides - genetics</subject><subject>Opioid Peptides - metabolism</subject><subject>Receptors, Opioid - genetics</subject><subject>Receptors, Opioid - metabolism</subject><issn>0301-0082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9LwzAYh3NQ3Jx-BKUncWA1b5Im2VHGdMLAg3oOaZpudW1Tm1bctzdlYx4NLwR-PO8fHoSuAN8DBv7gMcUQYyzJLSZTHJ6M2QkaH-MROvf-M-ScYnqGRkAwJDATY3S3-GlK1xb1Ouo2NnJN4Yos8jvf2SpKd9Ha1jba1s5sXd9doNNcl95eHv4J-nhavM-X8er1-WX-uIoNk7KLrSaUpkIQ0FaaLKNcAqWQMcIZZSK1SaaFhRlNudEmMIyQ3FLCTJbkVAg6QdP93I0uVdMWlW53yulCLR9XasgwA5YA5d8Q2Js927Tuq7e-U1XhjS1LXVvXeyWAz8JS_i8IkiUYExLAZA-a1nnf2vx4AmA1-FZvg1g1iFU41OBbsdB3fVjQp5XN_roOsukv9d568A</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Kieffer, Brigitte L</creator><creator>Gavériaux-Ruff, Claire</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20020401</creationdate><title>Exploring the opioid system by gene knockout</title><author>Kieffer, Brigitte L ; Gavériaux-Ruff, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Brain Chemistry - physiology</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurons and Cognition</topic><topic>Opioid Peptides - genetics</topic><topic>Opioid Peptides - metabolism</topic><topic>Receptors, Opioid - genetics</topic><topic>Receptors, Opioid - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kieffer, Brigitte L</creatorcontrib><creatorcontrib>Gavériaux-Ruff, Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kieffer, Brigitte L</au><au>Gavériaux-Ruff, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the opioid system by gene knockout</atitle><jtitle>Progress in neurobiology</jtitle><addtitle>Prog Neurobiol</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>66</volume><issue>5</issue><spage>285</spage><epage>306</epage><pages>285-306</pages><issn>0301-0082</issn><abstract>The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>12015197</pmid><doi>10.1016/s0301-0082(02)00008-4</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-0082 |
ispartof | Progress in neurobiology, 2002-04, Vol.66 (5), p.285-306 |
issn | 0301-0082 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04145136v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Brain Chemistry - physiology Life Sciences Mice Mice, Knockout Neurons and Cognition Opioid Peptides - genetics Opioid Peptides - metabolism Receptors, Opioid - genetics Receptors, Opioid - metabolism |
title | Exploring the opioid system by gene knockout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20opioid%20system%20by%20gene%20knockout&rft.jtitle=Progress%20in%20neurobiology&rft.au=Kieffer,%20Brigitte%20L&rft.date=2002-04-01&rft.volume=66&rft.issue=5&rft.spage=285&rft.epage=306&rft.pages=285-306&rft.issn=0301-0082&rft_id=info:doi/10.1016/s0301-0082(02)00008-4&rft_dat=%3Cproquest_hal_p%3E71693476%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18450022&rft_id=info:pmid/12015197&rfr_iscdi=true |