Exploring the opioid system by gene knockout

The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neurobiology 2002-04, Vol.66 (5), p.285-306
Hauptverfasser: Kieffer, Brigitte L, Gavériaux-Ruff, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 5
container_start_page 285
container_title Progress in neurobiology
container_volume 66
creator Kieffer, Brigitte L
Gavériaux-Ruff, Claire
description The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.
doi_str_mv 10.1016/s0301-0082(02)00008-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04145136v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71693476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh3NQ3Jx-BKUncWA1b5Im2VHGdMLAg3oOaZpudW1Tm1bctzdlYx4NLwR-PO8fHoSuAN8DBv7gMcUQYyzJLSZTHJ6M2QkaH-MROvf-M-ScYnqGRkAwJDATY3S3-GlK1xb1Ouo2NnJN4Yos8jvf2SpKd9Ha1jba1s5sXd9doNNcl95eHv4J-nhavM-X8er1-WX-uIoNk7KLrSaUpkIQ0FaaLKNcAqWQMcIZZSK1SaaFhRlNudEmMIyQ3FLCTJbkVAg6QdP93I0uVdMWlW53yulCLR9XasgwA5YA5d8Q2Js927Tuq7e-U1XhjS1LXVvXeyWAz8JS_i8IkiUYExLAZA-a1nnf2vx4AmA1-FZvg1g1iFU41OBbsdB3fVjQp5XN_roOsukv9d568A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18450022</pqid></control><display><type>article</type><title>Exploring the opioid system by gene knockout</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kieffer, Brigitte L ; Gavériaux-Ruff, Claire</creator><creatorcontrib>Kieffer, Brigitte L ; Gavériaux-Ruff, Claire</creatorcontrib><description>The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.</description><identifier>ISSN: 0301-0082</identifier><identifier>DOI: 10.1016/s0301-0082(02)00008-4</identifier><identifier>PMID: 12015197</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Animals ; Brain Chemistry - physiology ; Life Sciences ; Mice ; Mice, Knockout ; Neurons and Cognition ; Opioid Peptides - genetics ; Opioid Peptides - metabolism ; Receptors, Opioid - genetics ; Receptors, Opioid - metabolism</subject><ispartof>Progress in neurobiology, 2002-04, Vol.66 (5), p.285-306</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</citedby><cites>FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12015197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04145136$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kieffer, Brigitte L</creatorcontrib><creatorcontrib>Gavériaux-Ruff, Claire</creatorcontrib><title>Exploring the opioid system by gene knockout</title><title>Progress in neurobiology</title><addtitle>Prog Neurobiol</addtitle><description>The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.</description><subject>Animals</subject><subject>Brain Chemistry - physiology</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Neurons and Cognition</subject><subject>Opioid Peptides - genetics</subject><subject>Opioid Peptides - metabolism</subject><subject>Receptors, Opioid - genetics</subject><subject>Receptors, Opioid - metabolism</subject><issn>0301-0082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9LwzAYh3NQ3Jx-BKUncWA1b5Im2VHGdMLAg3oOaZpudW1Tm1bctzdlYx4NLwR-PO8fHoSuAN8DBv7gMcUQYyzJLSZTHJ6M2QkaH-MROvf-M-ScYnqGRkAwJDATY3S3-GlK1xb1Ouo2NnJN4Yos8jvf2SpKd9Ha1jba1s5sXd9doNNcl95eHv4J-nhavM-X8er1-WX-uIoNk7KLrSaUpkIQ0FaaLKNcAqWQMcIZZSK1SaaFhRlNudEmMIyQ3FLCTJbkVAg6QdP93I0uVdMWlW53yulCLR9XasgwA5YA5d8Q2Js927Tuq7e-U1XhjS1LXVvXeyWAz8JS_i8IkiUYExLAZA-a1nnf2vx4AmA1-FZvg1g1iFU41OBbsdB3fVjQp5XN_roOsukv9d568A</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Kieffer, Brigitte L</creator><creator>Gavériaux-Ruff, Claire</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20020401</creationdate><title>Exploring the opioid system by gene knockout</title><author>Kieffer, Brigitte L ; Gavériaux-Ruff, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-ea233b7721ae8cdd3681331d4264347be5da7e193b6cacae8422fe324cd5f3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Brain Chemistry - physiology</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Neurons and Cognition</topic><topic>Opioid Peptides - genetics</topic><topic>Opioid Peptides - metabolism</topic><topic>Receptors, Opioid - genetics</topic><topic>Receptors, Opioid - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kieffer, Brigitte L</creatorcontrib><creatorcontrib>Gavériaux-Ruff, Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kieffer, Brigitte L</au><au>Gavériaux-Ruff, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the opioid system by gene knockout</atitle><jtitle>Progress in neurobiology</jtitle><addtitle>Prog Neurobiol</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>66</volume><issue>5</issue><spage>285</spage><epage>306</epage><pages>285-306</pages><issn>0301-0082</issn><abstract>The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>12015197</pmid><doi>10.1016/s0301-0082(02)00008-4</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-0082
ispartof Progress in neurobiology, 2002-04, Vol.66 (5), p.285-306
issn 0301-0082
language eng
recordid cdi_hal_primary_oai_HAL_hal_04145136v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Brain Chemistry - physiology
Life Sciences
Mice
Mice, Knockout
Neurons and Cognition
Opioid Peptides - genetics
Opioid Peptides - metabolism
Receptors, Opioid - genetics
Receptors, Opioid - metabolism
title Exploring the opioid system by gene knockout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20opioid%20system%20by%20gene%20knockout&rft.jtitle=Progress%20in%20neurobiology&rft.au=Kieffer,%20Brigitte%20L&rft.date=2002-04-01&rft.volume=66&rft.issue=5&rft.spage=285&rft.epage=306&rft.pages=285-306&rft.issn=0301-0082&rft_id=info:doi/10.1016/s0301-0082(02)00008-4&rft_dat=%3Cproquest_hal_p%3E71693476%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18450022&rft_id=info:pmid/12015197&rfr_iscdi=true