Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region

Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2024-11, Vol.60 (11), p.n/a
Hauptverfasser: Huynh, Ngo Nghi Truyen, Garambois, Pierre‐André, Colleoni, François, Renard, Benjamin, Roux, Hélène, Demargne, Julie, Jay‐Allemand, Maxime, Javelle, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Water resources research
container_volume 60
creator Huynh, Ngo Nghi Truyen
Garambois, Pierre‐André
Colleoni, François
Renard, Benjamin
Roux, Hélène
Demargne, Julie
Jay‐Allemand, Maxime
Javelle, Pierre
description Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases. Key Points Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network
doi_str_mv 10.1029/2024WR037544
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04145059v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133054262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2616-eb9230190cdb1c5761694abbe1a864359df14521d5cfc7d8d405b4c05f492e1f3</originalsourceid><addsrcrecordid>eNp9kc-O0zAQxi0EEmXhxgNY4gISAf9Nam5VYbdIXSEFVj1GjjNpvPLGwXZA5cQj8B68FU-Cu10hxIHTzHz-6dM3HoSeUvKKEqZeM8LEria8kkLcQwuqhCgqVfH7aEGI4AXlqnqIHsV4TQgVsqwW6OcWdBjtuMc17K0ftbPfdMoNvopHdWXMHHQC_HHKsnZ47WPCF0F3FsYU8c6mwY5Y47e27yFkzerWAd7Y_fDr-48aonfzrd_m0AXv_N6a7HLpO3Bv8GqaXJ5v35PHaQB8nj3MgC-hswlC0CPo8S7bY_Sg1y7Ck7t6hq7O331ab4rth4v369W2MKykZQGtYpxQRUzXUiOrrCmh2xaoXpaCS9X1eXlGO2l6U3XLThDZCkNkLxQD2vMz9OLkO2jXTMHe6HBovLbNZrVtjhoR2YBI9YVn9vmJnYL_PENMzY2NBpzLwf0cG06lYKJaKpLRZ_-g134O-cePFOckgyXL1MsTZYKPMUD_JwElzfHKzd9Xzjg_4V-tg8N_2WZXr2uWu5L_BlV4q0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133054262</pqid></control><display><type>article</type><title>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huynh, Ngo Nghi Truyen ; Garambois, Pierre‐André ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène ; Demargne, Julie ; Jay‐Allemand, Maxime ; Javelle, Pierre</creator><creatorcontrib>Huynh, Ngo Nghi Truyen ; Garambois, Pierre‐André ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène ; Demargne, Julie ; Jay‐Allemand, Maxime ; Javelle, Pierre</creatorcontrib><description>Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases. Key Points Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2024WR037544</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Artificial neural networks ; Calibration ; Catchment area ; Catchments ; Context ; Cost function ; Data assimilation ; Data collection ; differentiable models ; distributed hydrological modeling ; Earth Sciences ; Environmental Engineering ; Environmental Sciences ; flood forecasting ; Floods ; Gradients ; hybrid AI ; Hydrologic models ; Hydrology ; Inverse problems ; Machine Learning ; Mapping ; Mediterranean region ; Neural networks ; Parameter estimation ; parameter regionalization ; Parameters ; Regression analysis ; Regression models ; Sciences of the Universe ; Spatial data ; Spatial discrimination learning ; Statistics ; Transfer functions ; Transfer learning ; variational data assimilation ; water</subject><ispartof>Water resources research, 2024-11, Vol.60 (11), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2616-eb9230190cdb1c5761694abbe1a864359df14521d5cfc7d8d405b4c05f492e1f3</cites><orcidid>0000-0001-8350-6741 ; 0000-0001-5078-3865 ; 0000-0001-9330-5054 ; 0000-0001-7076-5015 ; 0000-0001-8447-5430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024WR037544$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024WR037544$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11493,11541,27901,27902,45550,45551,46027,46443,46451,46867</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04145059$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, Ngo Nghi Truyen</creatorcontrib><creatorcontrib>Garambois, Pierre‐André</creatorcontrib><creatorcontrib>Colleoni, François</creatorcontrib><creatorcontrib>Renard, Benjamin</creatorcontrib><creatorcontrib>Roux, Hélène</creatorcontrib><creatorcontrib>Demargne, Julie</creatorcontrib><creatorcontrib>Jay‐Allemand, Maxime</creatorcontrib><creatorcontrib>Javelle, Pierre</creatorcontrib><title>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</title><title>Water resources research</title><description>Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases. Key Points Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network</description><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Context</subject><subject>Cost function</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>differentiable models</subject><subject>distributed hydrological modeling</subject><subject>Earth Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>flood forecasting</subject><subject>Floods</subject><subject>Gradients</subject><subject>hybrid AI</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Inverse problems</subject><subject>Machine Learning</subject><subject>Mapping</subject><subject>Mediterranean region</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>parameter regionalization</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sciences of the Universe</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>Statistics</subject><subject>Transfer functions</subject><subject>Transfer learning</subject><subject>variational data assimilation</subject><subject>water</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc-O0zAQxi0EEmXhxgNY4gISAf9Nam5VYbdIXSEFVj1GjjNpvPLGwXZA5cQj8B68FU-Cu10hxIHTzHz-6dM3HoSeUvKKEqZeM8LEria8kkLcQwuqhCgqVfH7aEGI4AXlqnqIHsV4TQgVsqwW6OcWdBjtuMc17K0ftbPfdMoNvopHdWXMHHQC_HHKsnZ47WPCF0F3FsYU8c6mwY5Y47e27yFkzerWAd7Y_fDr-48aonfzrd_m0AXv_N6a7HLpO3Bv8GqaXJ5v35PHaQB8nj3MgC-hswlC0CPo8S7bY_Sg1y7Ck7t6hq7O331ab4rth4v369W2MKykZQGtYpxQRUzXUiOrrCmh2xaoXpaCS9X1eXlGO2l6U3XLThDZCkNkLxQD2vMz9OLkO2jXTMHe6HBovLbNZrVtjhoR2YBI9YVn9vmJnYL_PENMzY2NBpzLwf0cG06lYKJaKpLRZ_-g134O-cePFOckgyXL1MsTZYKPMUD_JwElzfHKzd9Xzjg_4V-tg8N_2WZXr2uWu5L_BlV4q0c</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Huynh, Ngo Nghi Truyen</creator><creator>Garambois, Pierre‐André</creator><creator>Colleoni, François</creator><creator>Renard, Benjamin</creator><creator>Roux, Hélène</creator><creator>Demargne, Julie</creator><creator>Jay‐Allemand, Maxime</creator><creator>Javelle, Pierre</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8350-6741</orcidid><orcidid>https://orcid.org/0000-0001-5078-3865</orcidid><orcidid>https://orcid.org/0000-0001-9330-5054</orcidid><orcidid>https://orcid.org/0000-0001-7076-5015</orcidid><orcidid>https://orcid.org/0000-0001-8447-5430</orcidid></search><sort><creationdate>202411</creationdate><title>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</title><author>Huynh, Ngo Nghi Truyen ; Garambois, Pierre‐André ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène ; Demargne, Julie ; Jay‐Allemand, Maxime ; Javelle, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2616-eb9230190cdb1c5761694abbe1a864359df14521d5cfc7d8d405b4c05f492e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Context</topic><topic>Cost function</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>differentiable models</topic><topic>distributed hydrological modeling</topic><topic>Earth Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>flood forecasting</topic><topic>Floods</topic><topic>Gradients</topic><topic>hybrid AI</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Inverse problems</topic><topic>Machine Learning</topic><topic>Mapping</topic><topic>Mediterranean region</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>parameter regionalization</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sciences of the Universe</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>Statistics</topic><topic>Transfer functions</topic><topic>Transfer learning</topic><topic>variational data assimilation</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, Ngo Nghi Truyen</creatorcontrib><creatorcontrib>Garambois, Pierre‐André</creatorcontrib><creatorcontrib>Colleoni, François</creatorcontrib><creatorcontrib>Renard, Benjamin</creatorcontrib><creatorcontrib>Roux, Hélène</creatorcontrib><creatorcontrib>Demargne, Julie</creatorcontrib><creatorcontrib>Jay‐Allemand, Maxime</creatorcontrib><creatorcontrib>Javelle, Pierre</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, Ngo Nghi Truyen</au><au>Garambois, Pierre‐André</au><au>Colleoni, François</au><au>Renard, Benjamin</au><au>Roux, Hélène</au><au>Demargne, Julie</au><au>Jay‐Allemand, Maxime</au><au>Javelle, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</atitle><jtitle>Water resources research</jtitle><date>2024-11</date><risdate>2024</risdate><volume>60</volume><issue>11</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases. Key Points Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2024WR037544</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8350-6741</orcidid><orcidid>https://orcid.org/0000-0001-5078-3865</orcidid><orcidid>https://orcid.org/0000-0001-9330-5054</orcidid><orcidid>https://orcid.org/0000-0001-7076-5015</orcidid><orcidid>https://orcid.org/0000-0001-8447-5430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2024-11, Vol.60 (11), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_hal_primary_oai_HAL_hal_04145059v3
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
Calibration
Catchment area
Catchments
Context
Cost function
Data assimilation
Data collection
differentiable models
distributed hydrological modeling
Earth Sciences
Environmental Engineering
Environmental Sciences
flood forecasting
Floods
Gradients
hybrid AI
Hydrologic models
Hydrology
Inverse problems
Machine Learning
Mapping
Mediterranean region
Neural networks
Parameter estimation
parameter regionalization
Parameters
Regression analysis
Regression models
Sciences of the Universe
Spatial data
Spatial discrimination learning
Statistics
Transfer functions
Transfer learning
variational data assimilation
water
title Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Regionalization%20Using%20Accurate%20Spatial%20Cost%20Gradients%20Within%20a%20Differentiable%20High%E2%80%90Resolution%20Hydrological%20Model:%20Application%20to%20the%20French%20Mediterranean%20Region&rft.jtitle=Water%20resources%20research&rft.au=Huynh,%20Ngo%20Nghi%20Truyen&rft.date=2024-11&rft.volume=60&rft.issue=11&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2024WR037544&rft_dat=%3Cproquest_hal_p%3E3133054262%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133054262&rft_id=info:pmid/&rfr_iscdi=true