Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region
Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical de...
Gespeichert in:
Veröffentlicht in: | Water resources research 2024-11, Vol.60 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Water resources research |
container_volume | 60 |
creator | Huynh, Ngo Nghi Truyen Garambois, Pierre‐André Colleoni, François Renard, Benjamin Roux, Hélène Demargne, Julie Jay‐Allemand, Maxime Javelle, Pierre |
description | Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases.
Key Points
Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings
Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization
Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network |
doi_str_mv | 10.1029/2024WR037544 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04145059v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133054262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2616-eb9230190cdb1c5761694abbe1a864359df14521d5cfc7d8d405b4c05f492e1f3</originalsourceid><addsrcrecordid>eNp9kc-O0zAQxi0EEmXhxgNY4gISAf9Nam5VYbdIXSEFVj1GjjNpvPLGwXZA5cQj8B68FU-Cu10hxIHTzHz-6dM3HoSeUvKKEqZeM8LEria8kkLcQwuqhCgqVfH7aEGI4AXlqnqIHsV4TQgVsqwW6OcWdBjtuMc17K0ftbPfdMoNvopHdWXMHHQC_HHKsnZ47WPCF0F3FsYU8c6mwY5Y47e27yFkzerWAd7Y_fDr-48aonfzrd_m0AXv_N6a7HLpO3Bv8GqaXJ5v35PHaQB8nj3MgC-hswlC0CPo8S7bY_Sg1y7Ck7t6hq7O331ab4rth4v369W2MKykZQGtYpxQRUzXUiOrrCmh2xaoXpaCS9X1eXlGO2l6U3XLThDZCkNkLxQD2vMz9OLkO2jXTMHe6HBovLbNZrVtjhoR2YBI9YVn9vmJnYL_PENMzY2NBpzLwf0cG06lYKJaKpLRZ_-g134O-cePFOckgyXL1MsTZYKPMUD_JwElzfHKzd9Xzjg_4V-tg8N_2WZXr2uWu5L_BlV4q0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133054262</pqid></control><display><type>article</type><title>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huynh, Ngo Nghi Truyen ; Garambois, Pierre‐André ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène ; Demargne, Julie ; Jay‐Allemand, Maxime ; Javelle, Pierre</creator><creatorcontrib>Huynh, Ngo Nghi Truyen ; Garambois, Pierre‐André ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène ; Demargne, Julie ; Jay‐Allemand, Maxime ; Javelle, Pierre</creatorcontrib><description>Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases.
Key Points
Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings
Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization
Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2024WR037544</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Artificial neural networks ; Calibration ; Catchment area ; Catchments ; Context ; Cost function ; Data assimilation ; Data collection ; differentiable models ; distributed hydrological modeling ; Earth Sciences ; Environmental Engineering ; Environmental Sciences ; flood forecasting ; Floods ; Gradients ; hybrid AI ; Hydrologic models ; Hydrology ; Inverse problems ; Machine Learning ; Mapping ; Mediterranean region ; Neural networks ; Parameter estimation ; parameter regionalization ; Parameters ; Regression analysis ; Regression models ; Sciences of the Universe ; Spatial data ; Spatial discrimination learning ; Statistics ; Transfer functions ; Transfer learning ; variational data assimilation ; water</subject><ispartof>Water resources research, 2024-11, Vol.60 (11), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2616-eb9230190cdb1c5761694abbe1a864359df14521d5cfc7d8d405b4c05f492e1f3</cites><orcidid>0000-0001-8350-6741 ; 0000-0001-5078-3865 ; 0000-0001-9330-5054 ; 0000-0001-7076-5015 ; 0000-0001-8447-5430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2024WR037544$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2024WR037544$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11493,11541,27901,27902,45550,45551,46027,46443,46451,46867</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04145059$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huynh, Ngo Nghi Truyen</creatorcontrib><creatorcontrib>Garambois, Pierre‐André</creatorcontrib><creatorcontrib>Colleoni, François</creatorcontrib><creatorcontrib>Renard, Benjamin</creatorcontrib><creatorcontrib>Roux, Hélène</creatorcontrib><creatorcontrib>Demargne, Julie</creatorcontrib><creatorcontrib>Jay‐Allemand, Maxime</creatorcontrib><creatorcontrib>Javelle, Pierre</creatorcontrib><title>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</title><title>Water resources research</title><description>Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases.
Key Points
Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings
Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization
Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network</description><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Context</subject><subject>Cost function</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>differentiable models</subject><subject>distributed hydrological modeling</subject><subject>Earth Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>flood forecasting</subject><subject>Floods</subject><subject>Gradients</subject><subject>hybrid AI</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Inverse problems</subject><subject>Machine Learning</subject><subject>Mapping</subject><subject>Mediterranean region</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>parameter regionalization</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sciences of the Universe</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>Statistics</subject><subject>Transfer functions</subject><subject>Transfer learning</subject><subject>variational data assimilation</subject><subject>water</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kc-O0zAQxi0EEmXhxgNY4gISAf9Nam5VYbdIXSEFVj1GjjNpvPLGwXZA5cQj8B68FU-Cu10hxIHTzHz-6dM3HoSeUvKKEqZeM8LEria8kkLcQwuqhCgqVfH7aEGI4AXlqnqIHsV4TQgVsqwW6OcWdBjtuMc17K0ftbPfdMoNvopHdWXMHHQC_HHKsnZ47WPCF0F3FsYU8c6mwY5Y47e27yFkzerWAd7Y_fDr-48aonfzrd_m0AXv_N6a7HLpO3Bv8GqaXJ5v35PHaQB8nj3MgC-hswlC0CPo8S7bY_Sg1y7Ck7t6hq7O331ab4rth4v369W2MKykZQGtYpxQRUzXUiOrrCmh2xaoXpaCS9X1eXlGO2l6U3XLThDZCkNkLxQD2vMz9OLkO2jXTMHe6HBovLbNZrVtjhoR2YBI9YVn9vmJnYL_PENMzY2NBpzLwf0cG06lYKJaKpLRZ_-g134O-cePFOckgyXL1MsTZYKPMUD_JwElzfHKzd9Xzjg_4V-tg8N_2WZXr2uWu5L_BlV4q0c</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Huynh, Ngo Nghi Truyen</creator><creator>Garambois, Pierre‐André</creator><creator>Colleoni, François</creator><creator>Renard, Benjamin</creator><creator>Roux, Hélène</creator><creator>Demargne, Julie</creator><creator>Jay‐Allemand, Maxime</creator><creator>Javelle, Pierre</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8350-6741</orcidid><orcidid>https://orcid.org/0000-0001-5078-3865</orcidid><orcidid>https://orcid.org/0000-0001-9330-5054</orcidid><orcidid>https://orcid.org/0000-0001-7076-5015</orcidid><orcidid>https://orcid.org/0000-0001-8447-5430</orcidid></search><sort><creationdate>202411</creationdate><title>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</title><author>Huynh, Ngo Nghi Truyen ; Garambois, Pierre‐André ; Colleoni, François ; Renard, Benjamin ; Roux, Hélène ; Demargne, Julie ; Jay‐Allemand, Maxime ; Javelle, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2616-eb9230190cdb1c5761694abbe1a864359df14521d5cfc7d8d405b4c05f492e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Context</topic><topic>Cost function</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>differentiable models</topic><topic>distributed hydrological modeling</topic><topic>Earth Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>flood forecasting</topic><topic>Floods</topic><topic>Gradients</topic><topic>hybrid AI</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Inverse problems</topic><topic>Machine Learning</topic><topic>Mapping</topic><topic>Mediterranean region</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>parameter regionalization</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sciences of the Universe</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>Statistics</topic><topic>Transfer functions</topic><topic>Transfer learning</topic><topic>variational data assimilation</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huynh, Ngo Nghi Truyen</creatorcontrib><creatorcontrib>Garambois, Pierre‐André</creatorcontrib><creatorcontrib>Colleoni, François</creatorcontrib><creatorcontrib>Renard, Benjamin</creatorcontrib><creatorcontrib>Roux, Hélène</creatorcontrib><creatorcontrib>Demargne, Julie</creatorcontrib><creatorcontrib>Jay‐Allemand, Maxime</creatorcontrib><creatorcontrib>Javelle, Pierre</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huynh, Ngo Nghi Truyen</au><au>Garambois, Pierre‐André</au><au>Colleoni, François</au><au>Renard, Benjamin</au><au>Roux, Hélène</au><au>Demargne, Julie</au><au>Jay‐Allemand, Maxime</au><au>Javelle, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region</atitle><jtitle>Water resources research</jtitle><date>2024-11</date><risdate>2024</risdate><volume>60</volume><issue>11</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Estimating spatially distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem and requires imposing spatial constraints given the sparsity of discharge data. A possible approach is to search for a transfer function that quantitatively relates physical descriptors to conceptual model parameters. This paper introduces a Hybrid Data Assimilation and Parameter Regionalization (HDA‐PR) approach incorporating learnable regionalization mappings, based on either multi‐linear regression or artificial neural networks (ANNs), into a differentiable hydrological model. This approach demonstrates how two differentiable codes can be linked and their gradients chained, enabling the exploitation of heterogeneous data sets across extensive spatio‐temporal computational domains within a high‐dimensional regionalization context, using accurate adjoint‐based gradients. The inverse problem is tackled with a multi‐gauge calibration cost function accounting for information from multiple observation sites. HDA‐PR was tested on high‐resolution, hourly and kilometric regional modeling of 126 flash‐flood‐prone catchments in the French Mediterranean region. The results highlight a strong regionalization performance of HDA‐PR especially in the most challenging upstream‐to‐downstream extrapolation scenario with ANN, achieving median Nash‐Sutcliffe efficiency (NSE) scores from 0.6 to 0.71 for spatial, temporal, spatio‐temporal validations, and improving NSE by up to 30% on average compared to the baseline model calibrated with lumped parameters. Multiple evaluation metrics based on flood‐oriented hydrological signatures also indicate that the use of an ANN leads to better performances than a multi‐linear regression in a validation context. ANN enables to learn a non‐linear descriptors‐to‐parameters mapping which provides better model controllability than a linear mapping for complex calibration cases.
Key Points
Novel approach for regional calibration of a distributed hydrologic model using learnable and non‐linear descriptors‐to‐parameters mappings
Original combination of numerical adjoint model and neural network Jacobian: accurate gradients enable high‐dimensional optimization
Extensive case study in flash‐flood‐prone Mediterranean region shows effective regionalization of high‐resolution model with neural network</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2024WR037544</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8350-6741</orcidid><orcidid>https://orcid.org/0000-0001-5078-3865</orcidid><orcidid>https://orcid.org/0000-0001-9330-5054</orcidid><orcidid>https://orcid.org/0000-0001-7076-5015</orcidid><orcidid>https://orcid.org/0000-0001-8447-5430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2024-11, Vol.60 (11), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04145059v3 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete |
subjects | Artificial neural networks Calibration Catchment area Catchments Context Cost function Data assimilation Data collection differentiable models distributed hydrological modeling Earth Sciences Environmental Engineering Environmental Sciences flood forecasting Floods Gradients hybrid AI Hydrologic models Hydrology Inverse problems Machine Learning Mapping Mediterranean region Neural networks Parameter estimation parameter regionalization Parameters Regression analysis Regression models Sciences of the Universe Spatial data Spatial discrimination learning Statistics Transfer functions Transfer learning variational data assimilation water |
title | Learning Regionalization Using Accurate Spatial Cost Gradients Within a Differentiable High‐Resolution Hydrological Model: Application to the French Mediterranean Region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Regionalization%20Using%20Accurate%20Spatial%20Cost%20Gradients%20Within%20a%20Differentiable%20High%E2%80%90Resolution%20Hydrological%20Model:%20Application%20to%20the%20French%20Mediterranean%20Region&rft.jtitle=Water%20resources%20research&rft.au=Huynh,%20Ngo%20Nghi%20Truyen&rft.date=2024-11&rft.volume=60&rft.issue=11&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2024WR037544&rft_dat=%3Cproquest_hal_p%3E3133054262%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133054262&rft_id=info:pmid/&rfr_iscdi=true |