Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations

Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process safety and environmental protection 2022-07, Vol.163, p.727-742
Hauptverfasser: Arahmane, Hanan, Dumazert, Jonathan, Barat, Eric, Dautremer, Thomas, Carrel, Frédérick, Dufour, Nicolas, Michel, Maugan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 742
container_issue
container_start_page 727
container_title Process safety and environmental protection
container_volume 163
creator Arahmane, Hanan
Dumazert, Jonathan
Barat, Eric
Dautremer, Thomas
Carrel, Frédérick
Dufour, Nicolas
Michel, Maugan
description Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.
doi_str_mv 10.1016/j.psep.2022.05.034
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04125459v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095758202200427X</els_id><sourcerecordid>S095758202200427X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNskL5CTrjnYlWR5bUEvSUibkoVcmrMYS6N0FttaJMdh36KPHLtbeuxp4J_vH5iPsSspSink9su-PGQ8lEooVYq6FJX-wDay0bqoatN-ZBth6qaoWyU-sc8574UQUjVyw37fwhEzwchpDJhwdMg7yOh5HDnwjmZIBBPyFxgG4J7ylKh7nWhZx8Afqet65CEm3se3oscZe57AUwQ30UzTkXuc0P3haeTjq-sR0hK6OAyU85LT-MLjAROsUL5gZwH6jJd_5zl7_nb_8-6h2D19_3F3sytc1bRT4betQgi1ajx49GrbNAor05og0TndGaGVxhDA-EpJ0ZmgtQrQbbExog2mOmfXp7u_oLeHRAOko41A9uFmZ9dMaKlqXZtZLqw6sS7FnBOGfwUp7Orf7u3q367-rajt4n8pfT2VcPliJkw2O1r9ekqLEOsj_a_-Dszckr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</title><source>Elsevier ScienceDirect Journals</source><creator>Arahmane, Hanan ; Dumazert, Jonathan ; Barat, Eric ; Dautremer, Thomas ; Carrel, Frédérick ; Dufour, Nicolas ; Michel, Maugan</creator><creatorcontrib>Arahmane, Hanan ; Dumazert, Jonathan ; Barat, Eric ; Dautremer, Thomas ; Carrel, Frédérick ; Dufour, Nicolas ; Michel, Maugan</creatorcontrib><description>Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>EISSN: 0957-5820</identifier><identifier>DOI: 10.1016/j.psep.2022.05.034</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian inference ; Computer Science ; Gamma-ray spectrometry ; Kibble/Dirichlet distributions ; Nuclear decommissioning ; Nuclear Experiment ; Physics ; Radiation detection ; Signal and Image Processing</subject><ispartof>Process safety and environmental protection, 2022-07, Vol.163, p.727-742</ispartof><rights>2022 The Institution of Chemical Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</citedby><cites>FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</cites><orcidid>0000-0003-1326-9597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095758202200427X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04125459$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arahmane, Hanan</creatorcontrib><creatorcontrib>Dumazert, Jonathan</creatorcontrib><creatorcontrib>Barat, Eric</creatorcontrib><creatorcontrib>Dautremer, Thomas</creatorcontrib><creatorcontrib>Carrel, Frédérick</creatorcontrib><creatorcontrib>Dufour, Nicolas</creatorcontrib><creatorcontrib>Michel, Maugan</creatorcontrib><title>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</title><title>Process safety and environmental protection</title><description>Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.</description><subject>Bayesian inference</subject><subject>Computer Science</subject><subject>Gamma-ray spectrometry</subject><subject>Kibble/Dirichlet distributions</subject><subject>Nuclear decommissioning</subject><subject>Nuclear Experiment</subject><subject>Physics</subject><subject>Radiation detection</subject><subject>Signal and Image Processing</subject><issn>0957-5820</issn><issn>1744-3598</issn><issn>0957-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNskL5CTrjnYlWR5bUEvSUibkoVcmrMYS6N0FttaJMdh36KPHLtbeuxp4J_vH5iPsSspSink9su-PGQ8lEooVYq6FJX-wDay0bqoatN-ZBth6qaoWyU-sc8574UQUjVyw37fwhEzwchpDJhwdMg7yOh5HDnwjmZIBBPyFxgG4J7ylKh7nWhZx8Afqet65CEm3se3oscZe57AUwQ30UzTkXuc0P3haeTjq-sR0hK6OAyU85LT-MLjAROsUL5gZwH6jJd_5zl7_nb_8-6h2D19_3F3sytc1bRT4betQgi1ajx49GrbNAor05og0TndGaGVxhDA-EpJ0ZmgtQrQbbExog2mOmfXp7u_oLeHRAOko41A9uFmZ9dMaKlqXZtZLqw6sS7FnBOGfwUp7Orf7u3q367-rajt4n8pfT2VcPliJkw2O1r9ekqLEOsj_a_-Dszckr8</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Arahmane, Hanan</creator><creator>Dumazert, Jonathan</creator><creator>Barat, Eric</creator><creator>Dautremer, Thomas</creator><creator>Carrel, Frédérick</creator><creator>Dufour, Nicolas</creator><creator>Michel, Maugan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1326-9597</orcidid></search><sort><creationdate>202207</creationdate><title>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</title><author>Arahmane, Hanan ; Dumazert, Jonathan ; Barat, Eric ; Dautremer, Thomas ; Carrel, Frédérick ; Dufour, Nicolas ; Michel, Maugan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian inference</topic><topic>Computer Science</topic><topic>Gamma-ray spectrometry</topic><topic>Kibble/Dirichlet distributions</topic><topic>Nuclear decommissioning</topic><topic>Nuclear Experiment</topic><topic>Physics</topic><topic>Radiation detection</topic><topic>Signal and Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arahmane, Hanan</creatorcontrib><creatorcontrib>Dumazert, Jonathan</creatorcontrib><creatorcontrib>Barat, Eric</creatorcontrib><creatorcontrib>Dautremer, Thomas</creatorcontrib><creatorcontrib>Carrel, Frédérick</creatorcontrib><creatorcontrib>Dufour, Nicolas</creatorcontrib><creatorcontrib>Michel, Maugan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arahmane, Hanan</au><au>Dumazert, Jonathan</au><au>Barat, Eric</au><au>Dautremer, Thomas</au><au>Carrel, Frédérick</au><au>Dufour, Nicolas</au><au>Michel, Maugan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</atitle><jtitle>Process safety and environmental protection</jtitle><date>2022-07</date><risdate>2022</risdate><volume>163</volume><spage>727</spage><epage>742</epage><pages>727-742</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><eissn>0957-5820</eissn><abstract>Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.psep.2022.05.034</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1326-9597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-5820
ispartof Process safety and environmental protection, 2022-07, Vol.163, p.727-742
issn 0957-5820
1744-3598
0957-5820
language eng
recordid cdi_hal_primary_oai_HAL_hal_04125459v1
source Elsevier ScienceDirect Journals
subjects Bayesian inference
Computer Science
Gamma-ray spectrometry
Kibble/Dirichlet distributions
Nuclear decommissioning
Nuclear Experiment
Physics
Radiation detection
Signal and Image Processing
title Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20based%20on%20a%20bivariate%20gamma%20distribution%20of%20Kibble%20for%20low-level%20radioactivity%20detection%20in%20nuclear%20decommissioning%20operations&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Arahmane,%20Hanan&rft.date=2022-07&rft.volume=163&rft.spage=727&rft.epage=742&rft.pages=727-742&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2022.05.034&rft_dat=%3Celsevier_hal_p%3ES095758202200427X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S095758202200427X&rfr_iscdi=true