Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations
Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection a...
Gespeichert in:
Veröffentlicht in: | Process safety and environmental protection 2022-07, Vol.163, p.727-742 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 742 |
---|---|
container_issue | |
container_start_page | 727 |
container_title | Process safety and environmental protection |
container_volume | 163 |
creator | Arahmane, Hanan Dumazert, Jonathan Barat, Eric Dautremer, Thomas Carrel, Frédérick Dufour, Nicolas Michel, Maugan |
description | Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity. |
doi_str_mv | 10.1016/j.psep.2022.05.034 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04125459v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095758202200427X</els_id><sourcerecordid>S095758202200427X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNskL5CTrjnYlWR5bUEvSUibkoVcmrMYS6N0FttaJMdh36KPHLtbeuxp4J_vH5iPsSspSink9su-PGQ8lEooVYq6FJX-wDay0bqoatN-ZBth6qaoWyU-sc8574UQUjVyw37fwhEzwchpDJhwdMg7yOh5HDnwjmZIBBPyFxgG4J7ylKh7nWhZx8Afqet65CEm3se3oscZe57AUwQ30UzTkXuc0P3haeTjq-sR0hK6OAyU85LT-MLjAROsUL5gZwH6jJd_5zl7_nb_8-6h2D19_3F3sytc1bRT4betQgi1ajx49GrbNAor05og0TndGaGVxhDA-EpJ0ZmgtQrQbbExog2mOmfXp7u_oLeHRAOko41A9uFmZ9dMaKlqXZtZLqw6sS7FnBOGfwUp7Orf7u3q367-rajt4n8pfT2VcPliJkw2O1r9ekqLEOsj_a_-Dszckr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</title><source>Elsevier ScienceDirect Journals</source><creator>Arahmane, Hanan ; Dumazert, Jonathan ; Barat, Eric ; Dautremer, Thomas ; Carrel, Frédérick ; Dufour, Nicolas ; Michel, Maugan</creator><creatorcontrib>Arahmane, Hanan ; Dumazert, Jonathan ; Barat, Eric ; Dautremer, Thomas ; Carrel, Frédérick ; Dufour, Nicolas ; Michel, Maugan</creatorcontrib><description>Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.</description><identifier>ISSN: 0957-5820</identifier><identifier>EISSN: 1744-3598</identifier><identifier>EISSN: 0957-5820</identifier><identifier>DOI: 10.1016/j.psep.2022.05.034</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian inference ; Computer Science ; Gamma-ray spectrometry ; Kibble/Dirichlet distributions ; Nuclear decommissioning ; Nuclear Experiment ; Physics ; Radiation detection ; Signal and Image Processing</subject><ispartof>Process safety and environmental protection, 2022-07, Vol.163, p.727-742</ispartof><rights>2022 The Institution of Chemical Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</citedby><cites>FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</cites><orcidid>0000-0003-1326-9597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095758202200427X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04125459$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arahmane, Hanan</creatorcontrib><creatorcontrib>Dumazert, Jonathan</creatorcontrib><creatorcontrib>Barat, Eric</creatorcontrib><creatorcontrib>Dautremer, Thomas</creatorcontrib><creatorcontrib>Carrel, Frédérick</creatorcontrib><creatorcontrib>Dufour, Nicolas</creatorcontrib><creatorcontrib>Michel, Maugan</creatorcontrib><title>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</title><title>Process safety and environmental protection</title><description>Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.</description><subject>Bayesian inference</subject><subject>Computer Science</subject><subject>Gamma-ray spectrometry</subject><subject>Kibble/Dirichlet distributions</subject><subject>Nuclear decommissioning</subject><subject>Nuclear Experiment</subject><subject>Physics</subject><subject>Radiation detection</subject><subject>Signal and Image Processing</subject><issn>0957-5820</issn><issn>1744-3598</issn><issn>0957-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNskL5CTrjnYlWR5bUEvSUibkoVcmrMYS6N0FttaJMdh36KPHLtbeuxp4J_vH5iPsSspSink9su-PGQ8lEooVYq6FJX-wDay0bqoatN-ZBth6qaoWyU-sc8574UQUjVyw37fwhEzwchpDJhwdMg7yOh5HDnwjmZIBBPyFxgG4J7ylKh7nWhZx8Afqet65CEm3se3oscZe57AUwQ30UzTkXuc0P3haeTjq-sR0hK6OAyU85LT-MLjAROsUL5gZwH6jJd_5zl7_nb_8-6h2D19_3F3sytc1bRT4betQgi1ajx49GrbNAor05og0TndGaGVxhDA-EpJ0ZmgtQrQbbExog2mOmfXp7u_oLeHRAOko41A9uFmZ9dMaKlqXZtZLqw6sS7FnBOGfwUp7Orf7u3q367-rajt4n8pfT2VcPliJkw2O1r9ekqLEOsj_a_-Dszckr8</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Arahmane, Hanan</creator><creator>Dumazert, Jonathan</creator><creator>Barat, Eric</creator><creator>Dautremer, Thomas</creator><creator>Carrel, Frédérick</creator><creator>Dufour, Nicolas</creator><creator>Michel, Maugan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1326-9597</orcidid></search><sort><creationdate>202207</creationdate><title>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</title><author>Arahmane, Hanan ; Dumazert, Jonathan ; Barat, Eric ; Dautremer, Thomas ; Carrel, Frédérick ; Dufour, Nicolas ; Michel, Maugan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-d682eaf527daded26772e3989f1ecc4b90424effa9d3210b9f442fab6e7908f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian inference</topic><topic>Computer Science</topic><topic>Gamma-ray spectrometry</topic><topic>Kibble/Dirichlet distributions</topic><topic>Nuclear decommissioning</topic><topic>Nuclear Experiment</topic><topic>Physics</topic><topic>Radiation detection</topic><topic>Signal and Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arahmane, Hanan</creatorcontrib><creatorcontrib>Dumazert, Jonathan</creatorcontrib><creatorcontrib>Barat, Eric</creatorcontrib><creatorcontrib>Dautremer, Thomas</creatorcontrib><creatorcontrib>Carrel, Frédérick</creatorcontrib><creatorcontrib>Dufour, Nicolas</creatorcontrib><creatorcontrib>Michel, Maugan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Process safety and environmental protection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arahmane, Hanan</au><au>Dumazert, Jonathan</au><au>Barat, Eric</au><au>Dautremer, Thomas</au><au>Carrel, Frédérick</au><au>Dufour, Nicolas</au><au>Michel, Maugan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations</atitle><jtitle>Process safety and environmental protection</jtitle><date>2022-07</date><risdate>2022</risdate><volume>163</volume><spage>727</spage><epage>742</epage><pages>727-742</pages><issn>0957-5820</issn><eissn>1744-3598</eissn><eissn>0957-5820</eissn><abstract>Statistical test analysis has proven itself to be versatile tool in various scientific and technical fields, following either a frequentist approach based on a p−value, or a Bayesian approach evaluating a Bayes factor. In this study, the authors adapted a Bayesian approach to a radiation-detection application in the industrial context of nuclear decommissioning. The detection of a weak uranium signal on concrete, under the constraint of a very low signal-to-noise ratio, represents in particular a major challenge in this application area. For this purpose, we developed an original Bayesian statistical hypothesis test based on a bivariate gamma distribution of Kibble. Said test allows merging the absolute and relative characters of two Bayesian tests developed in the same context, as well as providing better performance tradeoff in both cases of stationary and non-stationary radiological backgrounds. The simulation-based study showed that the proposed Bayesian test should meet the abovementioned expectations, and allow the detection of a relatively low surface activity uranium contamination, while ensuring a competitive tradeoff between statistical sensitivity and specificity.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.psep.2022.05.034</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1326-9597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-5820 |
ispartof | Process safety and environmental protection, 2022-07, Vol.163, p.727-742 |
issn | 0957-5820 1744-3598 0957-5820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04125459v1 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian inference Computer Science Gamma-ray spectrometry Kibble/Dirichlet distributions Nuclear decommissioning Nuclear Experiment Physics Radiation detection Signal and Image Processing |
title | Bayesian inference based on a bivariate gamma distribution of Kibble for low-level radioactivity detection in nuclear decommissioning operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20based%20on%20a%20bivariate%20gamma%20distribution%20of%20Kibble%20for%20low-level%20radioactivity%20detection%20in%20nuclear%20decommissioning%20operations&rft.jtitle=Process%20safety%20and%20environmental%20protection&rft.au=Arahmane,%20Hanan&rft.date=2022-07&rft.volume=163&rft.spage=727&rft.epage=742&rft.pages=727-742&rft.issn=0957-5820&rft.eissn=1744-3598&rft_id=info:doi/10.1016/j.psep.2022.05.034&rft_dat=%3Celsevier_hal_p%3ES095758202200427X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S095758202200427X&rfr_iscdi=true |