Temperature of photoanode for photoelectrochemical water oxidation

Solar-light-driven photoelectrochemical that can utilise water for high-performance artificial photosynthesis for low-cost green hydrogen fuel production. However, the interaction of photoanode with water is crucial to its heterogeneous water oxidation for sustainable fuel production for the replace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2023-05, Vol.208, p.504-511
Hauptverfasser: Biswas, Neeraj Kumar, Srivastav, Anupam, Saxena, Sakshi, Verma, Anuradha, Dutta, Runjhun, Srivastava, Manju, Upadhyay, Sumant, Satsangi, Vibha Rani, Shrivastav, Rohit, Dass, Sahab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue
container_start_page 504
container_title Renewable energy
container_volume 208
creator Biswas, Neeraj Kumar
Srivastav, Anupam
Saxena, Sakshi
Verma, Anuradha
Dutta, Runjhun
Srivastava, Manju
Upadhyay, Sumant
Satsangi, Vibha Rani
Shrivastav, Rohit
Dass, Sahab
description Solar-light-driven photoelectrochemical that can utilise water for high-performance artificial photosynthesis for low-cost green hydrogen fuel production. However, the interaction of photoanode with water is crucial to its heterogeneous water oxidation for sustainable fuel production for the replacement of fossil fuels. Here, we report experiment investigations of photoelectrode with temperature for solar energy conversion. These measurements revealed that a rise in temperature affects the catalytic generation of hydrogen in three routes, viz., minimising the required energy for water splitting, reducing bandgap energy and mitigating the resistance at the interface. [Display omitted] •The bandgap of PCNDTO reduces with the increase in electrolytic temperature.•Resistance at semiconductor/electrolytes interface with rising temperature of electrolytes.•Faradaic efficiency of 92.49% for hydrogen production achieved at 45 °C in aqueous solution of NaOH + F6NaP.
doi_str_mv 10.1016/j.renene.2023.02.129
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04124338v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148123002781</els_id><sourcerecordid>oai_HAL_hal_04124338v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-89292d6559e14acd4c28455bcc336a0065b12bc6ca50c4c53a56c9adf1f8c3493</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gYdcPSTO_u3mItSiVih4qedlO5nQLWm2bGLVb29KxKPMYZjhvQfvx9gth4IDN_e7IlE7TCFAyAJEwUV5xibczsocjBXnbAKlgZwryy_ZVdftALi2MzVhj2vaHyj5_iNRFuvssI199G2sKKtjGk9qCPsUcUv7gL7JPn1PKYtfofJ9iO01u6h909HN756y9-en9WKZr95eXhfzVY5SQZ_bUpSiMlqXxJXHSqGwSusNopTGAxi94WKDBr0GVKil1wZLX9W8tkNCKafsbszd-sYdUtj79O2iD245X7nTDxQXSkp75INWjVpMsesS1X8GDu7EzO3cyMydmDkQbmA22B5GGw09joGS6zBQi1SFNDBwVQz_B_wAY4t3Vw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature of photoanode for photoelectrochemical water oxidation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Biswas, Neeraj Kumar ; Srivastav, Anupam ; Saxena, Sakshi ; Verma, Anuradha ; Dutta, Runjhun ; Srivastava, Manju ; Upadhyay, Sumant ; Satsangi, Vibha Rani ; Shrivastav, Rohit ; Dass, Sahab</creator><creatorcontrib>Biswas, Neeraj Kumar ; Srivastav, Anupam ; Saxena, Sakshi ; Verma, Anuradha ; Dutta, Runjhun ; Srivastava, Manju ; Upadhyay, Sumant ; Satsangi, Vibha Rani ; Shrivastav, Rohit ; Dass, Sahab</creatorcontrib><description>Solar-light-driven photoelectrochemical that can utilise water for high-performance artificial photosynthesis for low-cost green hydrogen fuel production. However, the interaction of photoanode with water is crucial to its heterogeneous water oxidation for sustainable fuel production for the replacement of fossil fuels. Here, we report experiment investigations of photoelectrode with temperature for solar energy conversion. These measurements revealed that a rise in temperature affects the catalytic generation of hydrogen in three routes, viz., minimising the required energy for water splitting, reducing bandgap energy and mitigating the resistance at the interface. [Display omitted] •The bandgap of PCNDTO reduces with the increase in electrolytic temperature.•Resistance at semiconductor/electrolytes interface with rising temperature of electrolytes.•Faradaic efficiency of 92.49% for hydrogen production achieved at 45 °C in aqueous solution of NaOH + F6NaP.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2023.02.129</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Hydrogen ; Partially crystalline ; Photoelectrochemical ; Temperature ; TiO2</subject><ispartof>Renewable energy, 2023-05, Vol.208, p.504-511</ispartof><rights>2023 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-89292d6559e14acd4c28455bcc336a0065b12bc6ca50c4c53a56c9adf1f8c3493</citedby><cites>FETCH-LOGICAL-c340t-89292d6559e14acd4c28455bcc336a0065b12bc6ca50c4c53a56c9adf1f8c3493</cites><orcidid>0000-0003-0798-2185 ; 0000-0003-1757-9744 ; 0000-0002-3992-7044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2023.02.129$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04124338$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biswas, Neeraj Kumar</creatorcontrib><creatorcontrib>Srivastav, Anupam</creatorcontrib><creatorcontrib>Saxena, Sakshi</creatorcontrib><creatorcontrib>Verma, Anuradha</creatorcontrib><creatorcontrib>Dutta, Runjhun</creatorcontrib><creatorcontrib>Srivastava, Manju</creatorcontrib><creatorcontrib>Upadhyay, Sumant</creatorcontrib><creatorcontrib>Satsangi, Vibha Rani</creatorcontrib><creatorcontrib>Shrivastav, Rohit</creatorcontrib><creatorcontrib>Dass, Sahab</creatorcontrib><title>Temperature of photoanode for photoelectrochemical water oxidation</title><title>Renewable energy</title><description>Solar-light-driven photoelectrochemical that can utilise water for high-performance artificial photosynthesis for low-cost green hydrogen fuel production. However, the interaction of photoanode with water is crucial to its heterogeneous water oxidation for sustainable fuel production for the replacement of fossil fuels. Here, we report experiment investigations of photoelectrode with temperature for solar energy conversion. These measurements revealed that a rise in temperature affects the catalytic generation of hydrogen in three routes, viz., minimising the required energy for water splitting, reducing bandgap energy and mitigating the resistance at the interface. [Display omitted] •The bandgap of PCNDTO reduces with the increase in electrolytic temperature.•Resistance at semiconductor/electrolytes interface with rising temperature of electrolytes.•Faradaic efficiency of 92.49% for hydrogen production achieved at 45 °C in aqueous solution of NaOH + F6NaP.</description><subject>Chemical Sciences</subject><subject>Hydrogen</subject><subject>Partially crystalline</subject><subject>Photoelectrochemical</subject><subject>Temperature</subject><subject>TiO2</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gYdcPSTO_u3mItSiVih4qedlO5nQLWm2bGLVb29KxKPMYZjhvQfvx9gth4IDN_e7IlE7TCFAyAJEwUV5xibczsocjBXnbAKlgZwryy_ZVdftALi2MzVhj2vaHyj5_iNRFuvssI199G2sKKtjGk9qCPsUcUv7gL7JPn1PKYtfofJ9iO01u6h909HN756y9-en9WKZr95eXhfzVY5SQZ_bUpSiMlqXxJXHSqGwSusNopTGAxi94WKDBr0GVKil1wZLX9W8tkNCKafsbszd-sYdUtj79O2iD245X7nTDxQXSkp75INWjVpMsesS1X8GDu7EzO3cyMydmDkQbmA22B5GGw09joGS6zBQi1SFNDBwVQz_B_wAY4t3Vw</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Biswas, Neeraj Kumar</creator><creator>Srivastav, Anupam</creator><creator>Saxena, Sakshi</creator><creator>Verma, Anuradha</creator><creator>Dutta, Runjhun</creator><creator>Srivastava, Manju</creator><creator>Upadhyay, Sumant</creator><creator>Satsangi, Vibha Rani</creator><creator>Shrivastav, Rohit</creator><creator>Dass, Sahab</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0798-2185</orcidid><orcidid>https://orcid.org/0000-0003-1757-9744</orcidid><orcidid>https://orcid.org/0000-0002-3992-7044</orcidid></search><sort><creationdate>202305</creationdate><title>Temperature of photoanode for photoelectrochemical water oxidation</title><author>Biswas, Neeraj Kumar ; Srivastav, Anupam ; Saxena, Sakshi ; Verma, Anuradha ; Dutta, Runjhun ; Srivastava, Manju ; Upadhyay, Sumant ; Satsangi, Vibha Rani ; Shrivastav, Rohit ; Dass, Sahab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-89292d6559e14acd4c28455bcc336a0065b12bc6ca50c4c53a56c9adf1f8c3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Hydrogen</topic><topic>Partially crystalline</topic><topic>Photoelectrochemical</topic><topic>Temperature</topic><topic>TiO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Neeraj Kumar</creatorcontrib><creatorcontrib>Srivastav, Anupam</creatorcontrib><creatorcontrib>Saxena, Sakshi</creatorcontrib><creatorcontrib>Verma, Anuradha</creatorcontrib><creatorcontrib>Dutta, Runjhun</creatorcontrib><creatorcontrib>Srivastava, Manju</creatorcontrib><creatorcontrib>Upadhyay, Sumant</creatorcontrib><creatorcontrib>Satsangi, Vibha Rani</creatorcontrib><creatorcontrib>Shrivastav, Rohit</creatorcontrib><creatorcontrib>Dass, Sahab</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Neeraj Kumar</au><au>Srivastav, Anupam</au><au>Saxena, Sakshi</au><au>Verma, Anuradha</au><au>Dutta, Runjhun</au><au>Srivastava, Manju</au><au>Upadhyay, Sumant</au><au>Satsangi, Vibha Rani</au><au>Shrivastav, Rohit</au><au>Dass, Sahab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature of photoanode for photoelectrochemical water oxidation</atitle><jtitle>Renewable energy</jtitle><date>2023-05</date><risdate>2023</risdate><volume>208</volume><spage>504</spage><epage>511</epage><pages>504-511</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Solar-light-driven photoelectrochemical that can utilise water for high-performance artificial photosynthesis for low-cost green hydrogen fuel production. However, the interaction of photoanode with water is crucial to its heterogeneous water oxidation for sustainable fuel production for the replacement of fossil fuels. Here, we report experiment investigations of photoelectrode with temperature for solar energy conversion. These measurements revealed that a rise in temperature affects the catalytic generation of hydrogen in three routes, viz., minimising the required energy for water splitting, reducing bandgap energy and mitigating the resistance at the interface. [Display omitted] •The bandgap of PCNDTO reduces with the increase in electrolytic temperature.•Resistance at semiconductor/electrolytes interface with rising temperature of electrolytes.•Faradaic efficiency of 92.49% for hydrogen production achieved at 45 °C in aqueous solution of NaOH + F6NaP.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2023.02.129</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0798-2185</orcidid><orcidid>https://orcid.org/0000-0003-1757-9744</orcidid><orcidid>https://orcid.org/0000-0002-3992-7044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2023-05, Vol.208, p.504-511
issn 0960-1481
1879-0682
language eng
recordid cdi_hal_primary_oai_HAL_hal_04124338v1
source Access via ScienceDirect (Elsevier)
subjects Chemical Sciences
Hydrogen
Partially crystalline
Photoelectrochemical
Temperature
TiO2
title Temperature of photoanode for photoelectrochemical water oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20of%20photoanode%20for%20photoelectrochemical%20water%20oxidation&rft.jtitle=Renewable%20energy&rft.au=Biswas,%20Neeraj%20Kumar&rft.date=2023-05&rft.volume=208&rft.spage=504&rft.epage=511&rft.pages=504-511&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2023.02.129&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04124338v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0960148123002781&rfr_iscdi=true