Instant Controlled Pressure-Drop (DIC) for Volatile Compound Extraction and Bioethanol Production from Empty Aleppo Pinecones and Eucalyptus Chips: Process Optimization and Statistical Modeling

Several plant species contain volatile compounds extracted as “essential oils” through different technologies. After essential oil extraction, the residual solid is a lignocellulosic solid waste. This work proposes the instant controlled pressure-drop (DIC) technology to autovaporize volatile compou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2023-11, Vol.195 (11), p.7086-7109
Hauptverfasser: Messaoudi, Yosra, Smichi, Neila, Allaf, Tamara, Besombes, Colette, Allaf, Karim, Gargouri, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7109
container_issue 11
container_start_page 7086
container_title Applied biochemistry and biotechnology
container_volume 195
creator Messaoudi, Yosra
Smichi, Neila
Allaf, Tamara
Besombes, Colette
Allaf, Karim
Gargouri, Mohamed
description Several plant species contain volatile compounds extracted as “essential oils” through different technologies. After essential oil extraction, the residual solid is a lignocellulosic solid waste. This work proposes the instant controlled pressure-drop (DIC) technology to autovaporize volatile compounds and modify the lignocellulosic matrix. Indeed, DIC technology is a thermomechanical process based on short-time/high-temperature and pressure pretreatment. It enhances the saccharification and fermentation process (SSF) for bioethanol production. A 3-variable design of experiments optimized the DIC processing parameters to reach 100% efficiency (EE) of volatile compound extraction using response surface methodology (RSM). Eucalyptus chips presented 50 volatile identified compounds after 7 min of DIC treatment. 1,8-Cineole, β-phellandrene, aromadendrene, eudesmol, and spathulenol are the most important volatile compounds. The empty Aleppo pinecones delivered 32 volatile compounds in 5 min of DIC treatment, the most important of which were caryophyllene, nortricyclene, verbenol, and camphor. After the autovaporization extraction stage, solid fraction residues were hydrolyzed and fermented in the same stirred bioreactor, using SSF strategy for 72 h at 37 °C. The highest bioethanol yields reached 73.9% and 54.82% (g per 100 g DM) from eucalyptus chip and empty Aleppo pinecone, respectively.
doi_str_mv 10.1007/s12010-023-04437-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04112942v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792501047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-4af044515c2559746afdb9516bf67f321083bcb961146403ad6c090ecb8c5903</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEokvhBTggS1zaQ8B_4sTmtmwXutKiVqLiajmO03Xl2MF2EMvb8WZ4m7JIHOBke-b3zYztryheIvgGQdi8jQhDBEuISQmrijRl_ahYIEp5DnH0uFhA3JASY8ZPimcx3kGIMKPN0-KE1JwxVuFF8XPjYpIugZV3KXhrdQeug45xCrq8CH4EZxeb1TnofQBfvJXJWJ3ZYfST68D6ewpSJeMdkPn43niddtJ5m2v4bpozffADWA9j2oOl1ePowbVxWnmn471qPSlp92OaIljtzBjfHcQqjwCuxmQG80MeG3xOeR-TyQLwyXfaGnf7vHjSSxv1i4f1tLj5sL5ZXZbbq4-b1XJbKsJJKivZ50eiiCqcX6ipatl3Laeobvu66QlGkJFWtbxGqKorSGRXK8ihVi1TlENyWpzPZXfSijGYQYa98NKIy-VWHGKwQgjzCn9DmT2b2TH4r5OOSQwmKm2tdNpPURBECaWMwua_KG44pvmXqwP6-i_0zk_B5TsLzBivGGYIZwrPlAo-xqD747AIioNtxGwbkW0j7m0j6ix69VB6agfdHSW_fZIBMgMxp9ytDn96_6PsL92Zzl4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889482812</pqid></control><display><type>article</type><title>Instant Controlled Pressure-Drop (DIC) for Volatile Compound Extraction and Bioethanol Production from Empty Aleppo Pinecones and Eucalyptus Chips: Process Optimization and Statistical Modeling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Messaoudi, Yosra ; Smichi, Neila ; Allaf, Tamara ; Besombes, Colette ; Allaf, Karim ; Gargouri, Mohamed</creator><creatorcontrib>Messaoudi, Yosra ; Smichi, Neila ; Allaf, Tamara ; Besombes, Colette ; Allaf, Karim ; Gargouri, Mohamed</creatorcontrib><description>Several plant species contain volatile compounds extracted as “essential oils” through different technologies. After essential oil extraction, the residual solid is a lignocellulosic solid waste. This work proposes the instant controlled pressure-drop (DIC) technology to autovaporize volatile compounds and modify the lignocellulosic matrix. Indeed, DIC technology is a thermomechanical process based on short-time/high-temperature and pressure pretreatment. It enhances the saccharification and fermentation process (SSF) for bioethanol production. A 3-variable design of experiments optimized the DIC processing parameters to reach 100% efficiency (EE) of volatile compound extraction using response surface methodology (RSM). Eucalyptus chips presented 50 volatile identified compounds after 7 min of DIC treatment. 1,8-Cineole, β-phellandrene, aromadendrene, eudesmol, and spathulenol are the most important volatile compounds. The empty Aleppo pinecones delivered 32 volatile compounds in 5 min of DIC treatment, the most important of which were caryophyllene, nortricyclene, verbenol, and camphor. After the autovaporization extraction stage, solid fraction residues were hydrolyzed and fermented in the same stirred bioreactor, using SSF strategy for 72 h at 37 °C. The highest bioethanol yields reached 73.9% and 54.82% (g per 100 g DM) from eucalyptus chip and empty Aleppo pinecone, respectively.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-023-04437-6</identifier><identifier>PMID: 36988842</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; bioethanol ; Biofuels ; Bioreactors ; Biotechnology ; Camphor ; Caryophyllene ; Chemistry ; Chemistry and Materials Science ; Cineole ; Design of experiments ; Design optimization ; Engineering Sciences ; Essential oils ; Ethanol ; ethanol production ; Eucalyptus ; Eudesmol ; Fermentation ; High temperature ; Lignocellulose ; Mathematical models ; Original Article ; Plant extracts ; Plant species ; Process parameters ; Response surface methodology ; Saccharification ; Solid wastes ; Spathulenol ; species ; Statistical models ; Thermomechanical treatment ; Volatile compounds</subject><ispartof>Applied biochemistry and biotechnology, 2023-11, Vol.195 (11), p.7086-7109</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-4af044515c2559746afdb9516bf67f321083bcb961146403ad6c090ecb8c5903</cites><orcidid>0000-0003-0148-3211 ; 0000-0002-7600-5903 ; 0000-0001-8722-2500 ; 0000-0001-8961-1542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-023-04437-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-023-04437-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36988842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04112942$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Messaoudi, Yosra</creatorcontrib><creatorcontrib>Smichi, Neila</creatorcontrib><creatorcontrib>Allaf, Tamara</creatorcontrib><creatorcontrib>Besombes, Colette</creatorcontrib><creatorcontrib>Allaf, Karim</creatorcontrib><creatorcontrib>Gargouri, Mohamed</creatorcontrib><title>Instant Controlled Pressure-Drop (DIC) for Volatile Compound Extraction and Bioethanol Production from Empty Aleppo Pinecones and Eucalyptus Chips: Process Optimization and Statistical Modeling</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>Several plant species contain volatile compounds extracted as “essential oils” through different technologies. After essential oil extraction, the residual solid is a lignocellulosic solid waste. This work proposes the instant controlled pressure-drop (DIC) technology to autovaporize volatile compounds and modify the lignocellulosic matrix. Indeed, DIC technology is a thermomechanical process based on short-time/high-temperature and pressure pretreatment. It enhances the saccharification and fermentation process (SSF) for bioethanol production. A 3-variable design of experiments optimized the DIC processing parameters to reach 100% efficiency (EE) of volatile compound extraction using response surface methodology (RSM). Eucalyptus chips presented 50 volatile identified compounds after 7 min of DIC treatment. 1,8-Cineole, β-phellandrene, aromadendrene, eudesmol, and spathulenol are the most important volatile compounds. The empty Aleppo pinecones delivered 32 volatile compounds in 5 min of DIC treatment, the most important of which were caryophyllene, nortricyclene, verbenol, and camphor. After the autovaporization extraction stage, solid fraction residues were hydrolyzed and fermented in the same stirred bioreactor, using SSF strategy for 72 h at 37 °C. The highest bioethanol yields reached 73.9% and 54.82% (g per 100 g DM) from eucalyptus chip and empty Aleppo pinecone, respectively.</description><subject>Biochemistry</subject><subject>bioethanol</subject><subject>Biofuels</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Camphor</subject><subject>Caryophyllene</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cineole</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Engineering Sciences</subject><subject>Essential oils</subject><subject>Ethanol</subject><subject>ethanol production</subject><subject>Eucalyptus</subject><subject>Eudesmol</subject><subject>Fermentation</subject><subject>High temperature</subject><subject>Lignocellulose</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Plant extracts</subject><subject>Plant species</subject><subject>Process parameters</subject><subject>Response surface methodology</subject><subject>Saccharification</subject><subject>Solid wastes</subject><subject>Spathulenol</subject><subject>species</subject><subject>Statistical models</subject><subject>Thermomechanical treatment</subject><subject>Volatile compounds</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFks9u1DAQxiMEokvhBTggS1zaQ8B_4sTmtmwXutKiVqLiajmO03Xl2MF2EMvb8WZ4m7JIHOBke-b3zYztryheIvgGQdi8jQhDBEuISQmrijRl_ahYIEp5DnH0uFhA3JASY8ZPimcx3kGIMKPN0-KE1JwxVuFF8XPjYpIugZV3KXhrdQeug45xCrq8CH4EZxeb1TnofQBfvJXJWJ3ZYfST68D6ewpSJeMdkPn43niddtJ5m2v4bpozffADWA9j2oOl1ePowbVxWnmn471qPSlp92OaIljtzBjfHcQqjwCuxmQG80MeG3xOeR-TyQLwyXfaGnf7vHjSSxv1i4f1tLj5sL5ZXZbbq4-b1XJbKsJJKivZ50eiiCqcX6ipatl3Laeobvu66QlGkJFWtbxGqKorSGRXK8ihVi1TlENyWpzPZXfSijGYQYa98NKIy-VWHGKwQgjzCn9DmT2b2TH4r5OOSQwmKm2tdNpPURBECaWMwua_KG44pvmXqwP6-i_0zk_B5TsLzBivGGYIZwrPlAo-xqD747AIioNtxGwbkW0j7m0j6ix69VB6agfdHSW_fZIBMgMxp9ytDn96_6PsL92Zzl4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Messaoudi, Yosra</creator><creator>Smichi, Neila</creator><creator>Allaf, Tamara</creator><creator>Besombes, Colette</creator><creator>Allaf, Karim</creator><creator>Gargouri, Mohamed</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Humana Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0148-3211</orcidid><orcidid>https://orcid.org/0000-0002-7600-5903</orcidid><orcidid>https://orcid.org/0000-0001-8722-2500</orcidid><orcidid>https://orcid.org/0000-0001-8961-1542</orcidid></search><sort><creationdate>20231101</creationdate><title>Instant Controlled Pressure-Drop (DIC) for Volatile Compound Extraction and Bioethanol Production from Empty Aleppo Pinecones and Eucalyptus Chips: Process Optimization and Statistical Modeling</title><author>Messaoudi, Yosra ; Smichi, Neila ; Allaf, Tamara ; Besombes, Colette ; Allaf, Karim ; Gargouri, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-4af044515c2559746afdb9516bf67f321083bcb961146403ad6c090ecb8c5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biochemistry</topic><topic>bioethanol</topic><topic>Biofuels</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Camphor</topic><topic>Caryophyllene</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cineole</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Engineering Sciences</topic><topic>Essential oils</topic><topic>Ethanol</topic><topic>ethanol production</topic><topic>Eucalyptus</topic><topic>Eudesmol</topic><topic>Fermentation</topic><topic>High temperature</topic><topic>Lignocellulose</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Plant extracts</topic><topic>Plant species</topic><topic>Process parameters</topic><topic>Response surface methodology</topic><topic>Saccharification</topic><topic>Solid wastes</topic><topic>Spathulenol</topic><topic>species</topic><topic>Statistical models</topic><topic>Thermomechanical treatment</topic><topic>Volatile compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messaoudi, Yosra</creatorcontrib><creatorcontrib>Smichi, Neila</creatorcontrib><creatorcontrib>Allaf, Tamara</creatorcontrib><creatorcontrib>Besombes, Colette</creatorcontrib><creatorcontrib>Allaf, Karim</creatorcontrib><creatorcontrib>Gargouri, Mohamed</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messaoudi, Yosra</au><au>Smichi, Neila</au><au>Allaf, Tamara</au><au>Besombes, Colette</au><au>Allaf, Karim</au><au>Gargouri, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instant Controlled Pressure-Drop (DIC) for Volatile Compound Extraction and Bioethanol Production from Empty Aleppo Pinecones and Eucalyptus Chips: Process Optimization and Statistical Modeling</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>195</volume><issue>11</issue><spage>7086</spage><epage>7109</epage><pages>7086-7109</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>Several plant species contain volatile compounds extracted as “essential oils” through different technologies. After essential oil extraction, the residual solid is a lignocellulosic solid waste. This work proposes the instant controlled pressure-drop (DIC) technology to autovaporize volatile compounds and modify the lignocellulosic matrix. Indeed, DIC technology is a thermomechanical process based on short-time/high-temperature and pressure pretreatment. It enhances the saccharification and fermentation process (SSF) for bioethanol production. A 3-variable design of experiments optimized the DIC processing parameters to reach 100% efficiency (EE) of volatile compound extraction using response surface methodology (RSM). Eucalyptus chips presented 50 volatile identified compounds after 7 min of DIC treatment. 1,8-Cineole, β-phellandrene, aromadendrene, eudesmol, and spathulenol are the most important volatile compounds. The empty Aleppo pinecones delivered 32 volatile compounds in 5 min of DIC treatment, the most important of which were caryophyllene, nortricyclene, verbenol, and camphor. After the autovaporization extraction stage, solid fraction residues were hydrolyzed and fermented in the same stirred bioreactor, using SSF strategy for 72 h at 37 °C. The highest bioethanol yields reached 73.9% and 54.82% (g per 100 g DM) from eucalyptus chip and empty Aleppo pinecone, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36988842</pmid><doi>10.1007/s12010-023-04437-6</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0148-3211</orcidid><orcidid>https://orcid.org/0000-0002-7600-5903</orcidid><orcidid>https://orcid.org/0000-0001-8722-2500</orcidid><orcidid>https://orcid.org/0000-0001-8961-1542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2023-11, Vol.195 (11), p.7086-7109
issn 0273-2289
1559-0291
language eng
recordid cdi_hal_primary_oai_HAL_hal_04112942v1
source SpringerLink Journals - AutoHoldings
subjects Biochemistry
bioethanol
Biofuels
Bioreactors
Biotechnology
Camphor
Caryophyllene
Chemistry
Chemistry and Materials Science
Cineole
Design of experiments
Design optimization
Engineering Sciences
Essential oils
Ethanol
ethanol production
Eucalyptus
Eudesmol
Fermentation
High temperature
Lignocellulose
Mathematical models
Original Article
Plant extracts
Plant species
Process parameters
Response surface methodology
Saccharification
Solid wastes
Spathulenol
species
Statistical models
Thermomechanical treatment
Volatile compounds
title Instant Controlled Pressure-Drop (DIC) for Volatile Compound Extraction and Bioethanol Production from Empty Aleppo Pinecones and Eucalyptus Chips: Process Optimization and Statistical Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instant%20Controlled%20Pressure-Drop%20(DIC)%20for%20Volatile%20Compound%20Extraction%20and%20Bioethanol%20Production%20from%20Empty%20Aleppo%20Pinecones%20and%20Eucalyptus%20Chips:%20Process%20Optimization%20and%20Statistical%20Modeling&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Messaoudi,%20Yosra&rft.date=2023-11-01&rft.volume=195&rft.issue=11&rft.spage=7086&rft.epage=7109&rft.pages=7086-7109&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-023-04437-6&rft_dat=%3Cproquest_hal_p%3E2792501047%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889482812&rft_id=info:pmid/36988842&rfr_iscdi=true