Mapping the urban heat Island at the territory scale: An unsupervised learning approach for urban planning applied to the Canton of Geneva

•Efficient unsupervised learning method for UHI analysis at the city scale.•Urban feature extraction with GMM clustering: 10 microclimatic clusters.•Simulated UHII with UWG tool and validation with urban on-site measurements.•Yearly average UHII analysis of Canton of Geneva ranging from 1.7 °C to 2....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable cities and society 2023-09, Vol.96, p.104677, Article 104677
Hauptverfasser: Boccalatte, Alessia, Fossa, Marco, Thebault, Martin, Ramousse, Julien, Ménézo, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104677
container_title Sustainable cities and society
container_volume 96
creator Boccalatte, Alessia
Fossa, Marco
Thebault, Martin
Ramousse, Julien
Ménézo, Christophe
description •Efficient unsupervised learning method for UHI analysis at the city scale.•Urban feature extraction with GMM clustering: 10 microclimatic clusters.•Simulated UHII with UWG tool and validation with urban on-site measurements.•Yearly average UHII analysis of Canton of Geneva ranging from 1.7 °C to 2.2 °C.•Methodology supports urban planning is reproducible and computationally efficient. This study presents a fully reproducible clustering-based methodology for the assessment of the urban heat island intensity (UHII) at the territory scale, using parametric microclimate models and limited computational resources. In large-scale climate modeling, a common preliminary operation is to utilize the well-established Local Climate Zone classification to characterize the thermal response of urban areas based on morphology. With the increasing availability of urban datasets, data-driven approaches can be implemented to quantitatively derive meaningful urban features without relying on a standardized classification. The proposed methodology employs a Gaussian Mixture Model clustering algorithm to partition the urban territory into a suitable number of homogeneous microclimate zones, enabling the calculation and mapping of the UHII for each zone through the Urban Weather Generator (UWG) tool. The developed approach is applied to the Canton of Geneva, Switzerland, identifying ten microclimatic areas and analyzing the spatiotemporal variation of UHII. Results show yearly average values of UHII ranging from 1.7 °C to 2.2 °C, depending on urban morphology. The simulated values are partially validated by comparison with on-site measurements from two urban weather stations, yielding a satisfactory agreement. The methodology can support urban planning with the goal of avoid overheating through a large-scale mapping. [Display omitted]
doi_str_mv 10.1016/j.scs.2023.104677
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04112033v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2210670723002883</els_id><sourcerecordid>S2210670723002883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-156dec9ba76df2b88b969956fb7f4f7defd912a8b331d4f0b03bae1c809d17fb3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhTOARFX6AGxeGVLs_DmBqaqAVipigdnyzzVxFezITiv1FXhqHFIY8WJfn3M-6Z4kuSF4STCp7vbLIMMyw1ke56Ki9CKZZRnBaUUxvUoWIexxPGVFmqKcJV8vvO-N_UBDC-jgBbeoBT6gbei4VSi-RmEA783g_AkFyTu4RyuLDjYcevBHE0ChDri3IybSvOOyRdr5M6-PpF-tM9E8uB_omtvBWeQ0egYLR36dXGreBVic73ny_vT4tt6ku9fn7Xq1S2VOiyElZaVANoLTSulM1LVoqqYpKy2oLjRVoFVDMl6LPCeq0FjgXHAgssaNIlSLfJ7cTtyWd6z35pP7E3PcsM1qx8Y_XBCS4Tw_kuglk1d6F4IH_RcgmI19sz2LfbOxbzb1HTMPUwbiEkcDPjoMWAnKeJADU878k_4GGa6Mbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping the urban heat Island at the territory scale: An unsupervised learning approach for urban planning applied to the Canton of Geneva</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boccalatte, Alessia ; Fossa, Marco ; Thebault, Martin ; Ramousse, Julien ; Ménézo, Christophe</creator><creatorcontrib>Boccalatte, Alessia ; Fossa, Marco ; Thebault, Martin ; Ramousse, Julien ; Ménézo, Christophe</creatorcontrib><description>•Efficient unsupervised learning method for UHI analysis at the city scale.•Urban feature extraction with GMM clustering: 10 microclimatic clusters.•Simulated UHII with UWG tool and validation with urban on-site measurements.•Yearly average UHII analysis of Canton of Geneva ranging from 1.7 °C to 2.2 °C.•Methodology supports urban planning is reproducible and computationally efficient. This study presents a fully reproducible clustering-based methodology for the assessment of the urban heat island intensity (UHII) at the territory scale, using parametric microclimate models and limited computational resources. In large-scale climate modeling, a common preliminary operation is to utilize the well-established Local Climate Zone classification to characterize the thermal response of urban areas based on morphology. With the increasing availability of urban datasets, data-driven approaches can be implemented to quantitatively derive meaningful urban features without relying on a standardized classification. The proposed methodology employs a Gaussian Mixture Model clustering algorithm to partition the urban territory into a suitable number of homogeneous microclimate zones, enabling the calculation and mapping of the UHII for each zone through the Urban Weather Generator (UWG) tool. The developed approach is applied to the Canton of Geneva, Switzerland, identifying ten microclimatic areas and analyzing the spatiotemporal variation of UHII. Results show yearly average values of UHII ranging from 1.7 °C to 2.2 °C, depending on urban morphology. The simulated values are partially validated by comparison with on-site measurements from two urban weather stations, yielding a satisfactory agreement. The methodology can support urban planning with the goal of avoid overheating through a large-scale mapping. [Display omitted]</description><identifier>ISSN: 2210-6707</identifier><identifier>DOI: 10.1016/j.scs.2023.104677</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Architecture, space management ; Engineering Sciences ; Environmental Engineering ; Environmental Sciences ; GIS-data ; Humanities and Social Sciences ; Local climate zones ; Mechanics ; Thermics ; Urban clustering ; Urban heat island ; Urban microclimate</subject><ispartof>Sustainable cities and society, 2023-09, Vol.96, p.104677, Article 104677</ispartof><rights>2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-156dec9ba76df2b88b969956fb7f4f7defd912a8b331d4f0b03bae1c809d17fb3</citedby><cites>FETCH-LOGICAL-c374t-156dec9ba76df2b88b969956fb7f4f7defd912a8b331d4f0b03bae1c809d17fb3</cites><orcidid>0000-0003-2620-8750 ; 0000-0003-4219-3229 ; 0000-0001-7846-8154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scs.2023.104677$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04112033$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boccalatte, Alessia</creatorcontrib><creatorcontrib>Fossa, Marco</creatorcontrib><creatorcontrib>Thebault, Martin</creatorcontrib><creatorcontrib>Ramousse, Julien</creatorcontrib><creatorcontrib>Ménézo, Christophe</creatorcontrib><title>Mapping the urban heat Island at the territory scale: An unsupervised learning approach for urban planning applied to the Canton of Geneva</title><title>Sustainable cities and society</title><description>•Efficient unsupervised learning method for UHI analysis at the city scale.•Urban feature extraction with GMM clustering: 10 microclimatic clusters.•Simulated UHII with UWG tool and validation with urban on-site measurements.•Yearly average UHII analysis of Canton of Geneva ranging from 1.7 °C to 2.2 °C.•Methodology supports urban planning is reproducible and computationally efficient. This study presents a fully reproducible clustering-based methodology for the assessment of the urban heat island intensity (UHII) at the territory scale, using parametric microclimate models and limited computational resources. In large-scale climate modeling, a common preliminary operation is to utilize the well-established Local Climate Zone classification to characterize the thermal response of urban areas based on morphology. With the increasing availability of urban datasets, data-driven approaches can be implemented to quantitatively derive meaningful urban features without relying on a standardized classification. The proposed methodology employs a Gaussian Mixture Model clustering algorithm to partition the urban territory into a suitable number of homogeneous microclimate zones, enabling the calculation and mapping of the UHII for each zone through the Urban Weather Generator (UWG) tool. The developed approach is applied to the Canton of Geneva, Switzerland, identifying ten microclimatic areas and analyzing the spatiotemporal variation of UHII. Results show yearly average values of UHII ranging from 1.7 °C to 2.2 °C, depending on urban morphology. The simulated values are partially validated by comparison with on-site measurements from two urban weather stations, yielding a satisfactory agreement. The methodology can support urban planning with the goal of avoid overheating through a large-scale mapping. [Display omitted]</description><subject>Architecture, space management</subject><subject>Engineering Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>GIS-data</subject><subject>Humanities and Social Sciences</subject><subject>Local climate zones</subject><subject>Mechanics</subject><subject>Thermics</subject><subject>Urban clustering</subject><subject>Urban heat island</subject><subject>Urban microclimate</subject><issn>2210-6707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhTOARFX6AGxeGVLs_DmBqaqAVipigdnyzzVxFezITiv1FXhqHFIY8WJfn3M-6Z4kuSF4STCp7vbLIMMyw1ke56Ki9CKZZRnBaUUxvUoWIexxPGVFmqKcJV8vvO-N_UBDC-jgBbeoBT6gbei4VSi-RmEA783g_AkFyTu4RyuLDjYcevBHE0ChDri3IybSvOOyRdr5M6-PpF-tM9E8uB_omtvBWeQ0egYLR36dXGreBVic73ny_vT4tt6ku9fn7Xq1S2VOiyElZaVANoLTSulM1LVoqqYpKy2oLjRVoFVDMl6LPCeq0FjgXHAgssaNIlSLfJ7cTtyWd6z35pP7E3PcsM1qx8Y_XBCS4Tw_kuglk1d6F4IH_RcgmI19sz2LfbOxbzb1HTMPUwbiEkcDPjoMWAnKeJADU878k_4GGa6Mbg</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Boccalatte, Alessia</creator><creator>Fossa, Marco</creator><creator>Thebault, Martin</creator><creator>Ramousse, Julien</creator><creator>Ménézo, Christophe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2620-8750</orcidid><orcidid>https://orcid.org/0000-0003-4219-3229</orcidid><orcidid>https://orcid.org/0000-0001-7846-8154</orcidid></search><sort><creationdate>202309</creationdate><title>Mapping the urban heat Island at the territory scale: An unsupervised learning approach for urban planning applied to the Canton of Geneva</title><author>Boccalatte, Alessia ; Fossa, Marco ; Thebault, Martin ; Ramousse, Julien ; Ménézo, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-156dec9ba76df2b88b969956fb7f4f7defd912a8b331d4f0b03bae1c809d17fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Architecture, space management</topic><topic>Engineering Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>GIS-data</topic><topic>Humanities and Social Sciences</topic><topic>Local climate zones</topic><topic>Mechanics</topic><topic>Thermics</topic><topic>Urban clustering</topic><topic>Urban heat island</topic><topic>Urban microclimate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boccalatte, Alessia</creatorcontrib><creatorcontrib>Fossa, Marco</creatorcontrib><creatorcontrib>Thebault, Martin</creatorcontrib><creatorcontrib>Ramousse, Julien</creatorcontrib><creatorcontrib>Ménézo, Christophe</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Sustainable cities and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boccalatte, Alessia</au><au>Fossa, Marco</au><au>Thebault, Martin</au><au>Ramousse, Julien</au><au>Ménézo, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the urban heat Island at the territory scale: An unsupervised learning approach for urban planning applied to the Canton of Geneva</atitle><jtitle>Sustainable cities and society</jtitle><date>2023-09</date><risdate>2023</risdate><volume>96</volume><spage>104677</spage><pages>104677-</pages><artnum>104677</artnum><issn>2210-6707</issn><abstract>•Efficient unsupervised learning method for UHI analysis at the city scale.•Urban feature extraction with GMM clustering: 10 microclimatic clusters.•Simulated UHII with UWG tool and validation with urban on-site measurements.•Yearly average UHII analysis of Canton of Geneva ranging from 1.7 °C to 2.2 °C.•Methodology supports urban planning is reproducible and computationally efficient. This study presents a fully reproducible clustering-based methodology for the assessment of the urban heat island intensity (UHII) at the territory scale, using parametric microclimate models and limited computational resources. In large-scale climate modeling, a common preliminary operation is to utilize the well-established Local Climate Zone classification to characterize the thermal response of urban areas based on morphology. With the increasing availability of urban datasets, data-driven approaches can be implemented to quantitatively derive meaningful urban features without relying on a standardized classification. The proposed methodology employs a Gaussian Mixture Model clustering algorithm to partition the urban territory into a suitable number of homogeneous microclimate zones, enabling the calculation and mapping of the UHII for each zone through the Urban Weather Generator (UWG) tool. The developed approach is applied to the Canton of Geneva, Switzerland, identifying ten microclimatic areas and analyzing the spatiotemporal variation of UHII. Results show yearly average values of UHII ranging from 1.7 °C to 2.2 °C, depending on urban morphology. The simulated values are partially validated by comparison with on-site measurements from two urban weather stations, yielding a satisfactory agreement. The methodology can support urban planning with the goal of avoid overheating through a large-scale mapping. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.scs.2023.104677</doi><orcidid>https://orcid.org/0000-0003-2620-8750</orcidid><orcidid>https://orcid.org/0000-0003-4219-3229</orcidid><orcidid>https://orcid.org/0000-0001-7846-8154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2210-6707
ispartof Sustainable cities and society, 2023-09, Vol.96, p.104677, Article 104677
issn 2210-6707
language eng
recordid cdi_hal_primary_oai_HAL_hal_04112033v1
source Access via ScienceDirect (Elsevier)
subjects Architecture, space management
Engineering Sciences
Environmental Engineering
Environmental Sciences
GIS-data
Humanities and Social Sciences
Local climate zones
Mechanics
Thermics
Urban clustering
Urban heat island
Urban microclimate
title Mapping the urban heat Island at the territory scale: An unsupervised learning approach for urban planning applied to the Canton of Geneva
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20urban%20heat%20Island%20at%20the%20territory%20scale:%20An%20unsupervised%20learning%20approach%20for%20urban%20planning%20applied%20to%20the%20Canton%20of%20Geneva&rft.jtitle=Sustainable%20cities%20and%20society&rft.au=Boccalatte,%20Alessia&rft.date=2023-09&rft.volume=96&rft.spage=104677&rft.pages=104677-&rft.artnum=104677&rft.issn=2210-6707&rft_id=info:doi/10.1016/j.scs.2023.104677&rft_dat=%3Celsevier_hal_p%3ES2210670723002883%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2210670723002883&rfr_iscdi=true