Evidence for chiral supercurrent in quantum Hall Josephson junctions

Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation 1 – 3 . However, despite recent experimental progress towards this hybridization 4 – 15 , concrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-12, Vol.624 (7992), p.545-550
Hauptverfasser: Vignaud, Hadrien, Perconte, David, Yang, Wenmin, Kousar, Bilal, Wagner, Edouard, Gay, Frédéric, Watanabe, Kenji, Taniguchi, Takashi, Courtois, Hervé, Han, Zheng, Sellier, Hermann, Sacépé, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 7992
container_start_page 545
container_title Nature (London)
container_volume 624
creator Vignaud, Hadrien
Perconte, David
Yang, Wenmin
Kousar, Bilal
Wagner, Edouard
Gay, Frédéric
Watanabe, Kenji
Taniguchi, Takashi
Courtois, Hervé
Han, Zheng
Sellier, Hermann
Sacépé, Benjamin
description Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation 1 – 3 . However, despite recent experimental progress towards this hybridization 4 – 15 , concrete evidence for a chiral QH Josephson junction 16 —the elemental building block for coherent superconducting QH circuits—is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2 ϕ 0 magnetic flux periodicity 16 – 19 ( ϕ 0  =  h /2 e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h /2 e 2  ≈ 12.9 kΩ. We observe reproducible 2 ϕ 0 -periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface 19 – 22 . Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes 23 – 32 . Ultra-narrow quantum Hall Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8  T.
doi_str_mv 10.1038/s41586-023-06764-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04103168v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906427212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-309ba71a17c02ccd1a76a4aa5ed48cd595f4f0c8616078cd8ad38c52a0a625f43</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq0KBAvtH-ihisSlHNKOP2I7R0SBbbUSFzhbg-N0s8raix0j9d_X2wCVOHCyNPP49XgeQj5T-EaB6-9J0EbLGhivQSopavGBLKhQshZSqwOyAGC6Bs3lMTlJaQMADVXiiBxzDRwUaxfkx9XT0DlvXdWHWNn1EHGsUt65aHOMzk_V4KvHjH7K22qJ41j9Csnt1in4apO9nYbg00dy2OOY3Kfn85TcX1_dXS7r1e3Nz8uLVW1Fw6eaQ_uAiiJVFpi1HUUlUSA2rhPadk3b9KIHqyWVoEpBY8e1bRgCSlZ6_JScz7lrHM0uDluMf0zAwSwvVmZfA1EWQ6V-ooX9OrO7GB6zS5PZDsm6cUTvQk6G6bZRtCxnj569QTchR19-YlgLUjDFKCsUmykbQ0rR9a8TUDB7H2b2YYoP88-H2U_85Tk6P2xd93rlRUAB-Ayk0vK_Xfz_9juxfwENEpQ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906427212</pqid></control><display><type>article</type><title>Evidence for chiral supercurrent in quantum Hall Josephson junctions</title><source>MEDLINE</source><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Vignaud, Hadrien ; Perconte, David ; Yang, Wenmin ; Kousar, Bilal ; Wagner, Edouard ; Gay, Frédéric ; Watanabe, Kenji ; Taniguchi, Takashi ; Courtois, Hervé ; Han, Zheng ; Sellier, Hermann ; Sacépé, Benjamin</creator><creatorcontrib>Vignaud, Hadrien ; Perconte, David ; Yang, Wenmin ; Kousar, Bilal ; Wagner, Edouard ; Gay, Frédéric ; Watanabe, Kenji ; Taniguchi, Takashi ; Courtois, Hervé ; Han, Zheng ; Sellier, Hermann ; Sacépé, Benjamin</creatorcontrib><description>Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation 1 – 3 . However, despite recent experimental progress towards this hybridization 4 – 15 , concrete evidence for a chiral QH Josephson junction 16 —the elemental building block for coherent superconducting QH circuits—is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2 ϕ 0 magnetic flux periodicity 16 – 19 ( ϕ 0  =  h /2 e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h /2 e 2  ≈ 12.9 kΩ. We observe reproducible 2 ϕ 0 -periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface 19 – 22 . Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes 23 – 32 . Ultra-narrow quantum Hall Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8  T.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06764-4</identifier><identifier>PMID: 38030729</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/918/1052 ; 639/766/1130/1064 ; 639/766/119/1003 ; 639/766/119/2794 ; Circuit design ; Concrete blocks ; Condensed Matter ; Electrons ; Fourier transforms ; Graphene ; Graphite ; Humanities and Social Sciences ; Hybridization, Genetic ; Josephson junctions ; Magnetic fields ; Magnetic flux ; Mesoscopic Systems and Quantum Hall Effect ; multidisciplinary ; Nanoribbons ; Oscillations ; Physics ; Plancks constant ; Plateaus ; Quantum Hall effect ; Science ; Science (multidisciplinary) ; Superconducting devices ; Superconductivity</subject><ispartof>Nature (London), 2023-12, Vol.624 (7992), p.545-550</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Dec 21-Dec 28, 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-309ba71a17c02ccd1a76a4aa5ed48cd595f4f0c8616078cd8ad38c52a0a625f43</citedby><cites>FETCH-LOGICAL-c453t-309ba71a17c02ccd1a76a4aa5ed48cd595f4f0c8616078cd8ad38c52a0a625f43</cites><orcidid>0000-0001-5943-9999 ; 0000-0003-3701-8119 ; 0000-0001-5721-6206 ; 0000-0002-1467-3105 ; 0000-0002-3201-9510 ; 0000-0002-1439-1044 ; 0000-0001-7045-2166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06764-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06764-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38030729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04103168$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vignaud, Hadrien</creatorcontrib><creatorcontrib>Perconte, David</creatorcontrib><creatorcontrib>Yang, Wenmin</creatorcontrib><creatorcontrib>Kousar, Bilal</creatorcontrib><creatorcontrib>Wagner, Edouard</creatorcontrib><creatorcontrib>Gay, Frédéric</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Courtois, Hervé</creatorcontrib><creatorcontrib>Han, Zheng</creatorcontrib><creatorcontrib>Sellier, Hermann</creatorcontrib><creatorcontrib>Sacépé, Benjamin</creatorcontrib><title>Evidence for chiral supercurrent in quantum Hall Josephson junctions</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation 1 – 3 . However, despite recent experimental progress towards this hybridization 4 – 15 , concrete evidence for a chiral QH Josephson junction 16 —the elemental building block for coherent superconducting QH circuits—is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2 ϕ 0 magnetic flux periodicity 16 – 19 ( ϕ 0  =  h /2 e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h /2 e 2  ≈ 12.9 kΩ. We observe reproducible 2 ϕ 0 -periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface 19 – 22 . Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes 23 – 32 . Ultra-narrow quantum Hall Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8  T.</description><subject>639/301/357/918/1052</subject><subject>639/766/1130/1064</subject><subject>639/766/119/1003</subject><subject>639/766/119/2794</subject><subject>Circuit design</subject><subject>Concrete blocks</subject><subject>Condensed Matter</subject><subject>Electrons</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Humanities and Social Sciences</subject><subject>Hybridization, Genetic</subject><subject>Josephson junctions</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>multidisciplinary</subject><subject>Nanoribbons</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Plancks constant</subject><subject>Plateaus</subject><subject>Quantum Hall effect</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconducting devices</subject><subject>Superconductivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1P3DAQhq0KBAvtH-ihisSlHNKOP2I7R0SBbbUSFzhbg-N0s8raix0j9d_X2wCVOHCyNPP49XgeQj5T-EaB6-9J0EbLGhivQSopavGBLKhQshZSqwOyAGC6Bs3lMTlJaQMADVXiiBxzDRwUaxfkx9XT0DlvXdWHWNn1EHGsUt65aHOMzk_V4KvHjH7K22qJ41j9Csnt1in4apO9nYbg00dy2OOY3Kfn85TcX1_dXS7r1e3Nz8uLVW1Fw6eaQ_uAiiJVFpi1HUUlUSA2rhPadk3b9KIHqyWVoEpBY8e1bRgCSlZ6_JScz7lrHM0uDluMf0zAwSwvVmZfA1EWQ6V-ooX9OrO7GB6zS5PZDsm6cUTvQk6G6bZRtCxnj569QTchR19-YlgLUjDFKCsUmykbQ0rR9a8TUDB7H2b2YYoP88-H2U_85Tk6P2xd93rlRUAB-Ayk0vK_Xfz_9juxfwENEpQ0</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Vignaud, Hadrien</creator><creator>Perconte, David</creator><creator>Yang, Wenmin</creator><creator>Kousar, Bilal</creator><creator>Wagner, Edouard</creator><creator>Gay, Frédéric</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Courtois, Hervé</creator><creator>Han, Zheng</creator><creator>Sellier, Hermann</creator><creator>Sacépé, Benjamin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5943-9999</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5721-6206</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-3201-9510</orcidid><orcidid>https://orcid.org/0000-0002-1439-1044</orcidid><orcidid>https://orcid.org/0000-0001-7045-2166</orcidid></search><sort><creationdate>20231221</creationdate><title>Evidence for chiral supercurrent in quantum Hall Josephson junctions</title><author>Vignaud, Hadrien ; Perconte, David ; Yang, Wenmin ; Kousar, Bilal ; Wagner, Edouard ; Gay, Frédéric ; Watanabe, Kenji ; Taniguchi, Takashi ; Courtois, Hervé ; Han, Zheng ; Sellier, Hermann ; Sacépé, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-309ba71a17c02ccd1a76a4aa5ed48cd595f4f0c8616078cd8ad38c52a0a625f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/357/918/1052</topic><topic>639/766/1130/1064</topic><topic>639/766/119/1003</topic><topic>639/766/119/2794</topic><topic>Circuit design</topic><topic>Concrete blocks</topic><topic>Condensed Matter</topic><topic>Electrons</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Humanities and Social Sciences</topic><topic>Hybridization, Genetic</topic><topic>Josephson junctions</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>multidisciplinary</topic><topic>Nanoribbons</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Plancks constant</topic><topic>Plateaus</topic><topic>Quantum Hall effect</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconducting devices</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vignaud, Hadrien</creatorcontrib><creatorcontrib>Perconte, David</creatorcontrib><creatorcontrib>Yang, Wenmin</creatorcontrib><creatorcontrib>Kousar, Bilal</creatorcontrib><creatorcontrib>Wagner, Edouard</creatorcontrib><creatorcontrib>Gay, Frédéric</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Courtois, Hervé</creatorcontrib><creatorcontrib>Han, Zheng</creatorcontrib><creatorcontrib>Sellier, Hermann</creatorcontrib><creatorcontrib>Sacépé, Benjamin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vignaud, Hadrien</au><au>Perconte, David</au><au>Yang, Wenmin</au><au>Kousar, Bilal</au><au>Wagner, Edouard</au><au>Gay, Frédéric</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Courtois, Hervé</au><au>Han, Zheng</au><au>Sellier, Hermann</au><au>Sacépé, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for chiral supercurrent in quantum Hall Josephson junctions</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>624</volume><issue>7992</issue><spage>545</spage><epage>550</epage><pages>545-550</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Hybridizing superconductivity with the quantum Hall (QH) effect has notable potential for designing circuits capable of inducing and manipulating non-Abelian states for topological quantum computation 1 – 3 . However, despite recent experimental progress towards this hybridization 4 – 15 , concrete evidence for a chiral QH Josephson junction 16 —the elemental building block for coherent superconducting QH circuits—is still lacking. Its expected signature is an unusual chiral supercurrent flowing in QH edge channels, which oscillates with a specific 2 ϕ 0 magnetic flux periodicity 16 – 19 ( ϕ 0  =  h /2 e is the superconducting flux quantum, where h is the Planck constant and e is the electron charge). Here we show that ultra-narrow Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8 T and carried by the spin-degenerate edge channel of the QH plateau of resistance h /2 e 2  ≈ 12.9 kΩ. We observe reproducible 2 ϕ 0 -periodic oscillations of the supercurrent, which emerge at a constant filling factor when the area of the loop formed by the QH edge channel is constant, within a magnetic-length correction that we resolve in the data. Furthermore, by varying the junction geometry, we show that reducing the superconductor/normal interface length is crucial in obtaining a measurable supercurrent on QH plateaus, in agreement with theories predicting dephasing along the superconducting interface 19 – 22 . Our findings are important for the exploration of correlated and fractional QH-based superconducting devices that host non-Abelian Majorana and parafermion zero modes 23 – 32 . Ultra-narrow quantum Hall Josephson junctions defined in encapsulated graphene nanoribbons exhibit a chiral supercurrent, visible up to 8  T.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38030729</pmid><doi>10.1038/s41586-023-06764-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5943-9999</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5721-6206</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-3201-9510</orcidid><orcidid>https://orcid.org/0000-0002-1439-1044</orcidid><orcidid>https://orcid.org/0000-0001-7045-2166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-12, Vol.624 (7992), p.545-550
issn 0028-0836
1476-4687
language eng
recordid cdi_hal_primary_oai_HAL_hal_04103168v1
source MEDLINE; Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects 639/301/357/918/1052
639/766/1130/1064
639/766/119/1003
639/766/119/2794
Circuit design
Concrete blocks
Condensed Matter
Electrons
Fourier transforms
Graphene
Graphite
Humanities and Social Sciences
Hybridization, Genetic
Josephson junctions
Magnetic fields
Magnetic flux
Mesoscopic Systems and Quantum Hall Effect
multidisciplinary
Nanoribbons
Oscillations
Physics
Plancks constant
Plateaus
Quantum Hall effect
Science
Science (multidisciplinary)
Superconducting devices
Superconductivity
title Evidence for chiral supercurrent in quantum Hall Josephson junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20chiral%20supercurrent%20in%20quantum%20Hall%20Josephson%20junctions&rft.jtitle=Nature%20(London)&rft.au=Vignaud,%20Hadrien&rft.date=2023-12-21&rft.volume=624&rft.issue=7992&rft.spage=545&rft.epage=550&rft.pages=545-550&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06764-4&rft_dat=%3Cproquest_hal_p%3E2906427212%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906427212&rft_id=info:pmid/38030729&rfr_iscdi=true