Arrival time for the fastest among N switching stochastic particles

The first arrivals among N Brownian particles is ubiquitous in the life sciences, as it often triggers cellular processes from the molecular level. We study here the case where stochastic particles, which represent proteins or molecules can switch between two states inside the non-negative real line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2022-07, Vol.95 (7), Article 113
Hauptverfasser: Toste, S., Holcman, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 95
creator Toste, S.
Holcman, D.
description The first arrivals among N Brownian particles is ubiquitous in the life sciences, as it often triggers cellular processes from the molecular level. We study here the case where stochastic particles, which represent proteins or molecules can switch between two states inside the non-negative real line. The switching process is modeled as a two-state Markov chain and particles can only escape in state 1. We estimate the fastest arrival time by solving asymptotically the Fokker–Planck equations for three different initial distributions: Dirac-delta, uniformly distributed and long-tail decay. The derived formulas reveal that the fastest particle avoids switching when the switching rates are much smaller than the diffusion time scale, but switches twice when the diffusion in state 2 is much faster than in state 1. The present results are compared to stochastic simulations revealing the range of validity of the derived formulas. Graphic abstract
doi_str_mv 10.1140/epjb/s10051-022-00366-1
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04101401v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710994402</galeid><sourcerecordid>A710994402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-4b4e461f377fa11e6765e4b8d9fc1ce65156d5a1568cfd18d0afd05e39a9535d3</originalsourceid><addsrcrecordid>eNqFkV1PwyAUhhujiZ-_wSZeedF5Tgu0vVwWdUsWTfy4JozCxtKVCWzqv5dZ4-KVIeEc4HnJC2-SXCIMEAncqPVyduMRgGIGeZ4BFIxleJCcIClIxuLy8LfPq-Pk1PslACBDcpKMhs6ZrWjTYFYq1dalYRGr8EH5kIqV7ebpQ-rfTZALE3sfrFzEUyPTtXCxtMqfJ0datF5d_NSz5PXu9mU0zqaP95PRcJpJQjBkZEYUYaiLstQCUbGSUUVmVVNriVIxipQ1VMS5krrBqgGhG6CqqEVNC9oUZ8l1f-9CtHztzEq4T26F4ePhlO_2gCDEL8EtRvaqZ9fOvm3iW_jSblwX7fGc1TkWDGgVqUFPzUWruOm0DU7IOBq1MtJ2Spu4PywR6poQyPcWfgSRCeojzMXGez55fvrLlj0rnfXeKf3rGYHvouO76HgfHY_R8e_o-M581St9VHRz5fbm_5N-ASItnQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692136058</pqid></control><display><type>article</type><title>Arrival time for the fastest among N switching stochastic particles</title><source>SpringerLink Journals</source><creator>Toste, S. ; Holcman, D.</creator><creatorcontrib>Toste, S. ; Holcman, D.</creatorcontrib><description>The first arrivals among N Brownian particles is ubiquitous in the life sciences, as it often triggers cellular processes from the molecular level. We study here the case where stochastic particles, which represent proteins or molecules can switch between two states inside the non-negative real line. The switching process is modeled as a two-state Markov chain and particles can only escape in state 1. We estimate the fastest arrival time by solving asymptotically the Fokker–Planck equations for three different initial distributions: Dirac-delta, uniformly distributed and long-tail decay. The derived formulas reveal that the fastest particle avoids switching when the switching rates are much smaller than the diffusion time scale, but switches twice when the diffusion in state 2 is much faster than in state 1. The present results are compared to stochastic simulations revealing the range of validity of the derived formulas. Graphic abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00366-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Brownian motion ; Complex Systems ; Condensed Matter Physics ; Diffusion rate ; Extreme Value Statistics and Search in Biology: Theory and Simulations ; Fluid- and Aerodynamics ; Fokker-Planck equation ; Markov chains ; Markov processes ; Mathematics ; Particle decay ; Physics ; Physics and Astronomy ; Solid State Physics ; Switches ; Switching ; Topical Review - Statistical and Nonlinear Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022-07, Vol.95 (7), Article 113</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-4b4e461f377fa11e6765e4b8d9fc1ce65156d5a1568cfd18d0afd05e39a9535d3</citedby><cites>FETCH-LOGICAL-c441t-4b4e461f377fa11e6765e4b8d9fc1ce65156d5a1568cfd18d0afd05e39a9535d3</cites><orcidid>0000-0002-5909-2566 ; 0000-0001-9854-5014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00366-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00366-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04101401$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Toste, S.</creatorcontrib><creatorcontrib>Holcman, D.</creatorcontrib><title>Arrival time for the fastest among N switching stochastic particles</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>The first arrivals among N Brownian particles is ubiquitous in the life sciences, as it often triggers cellular processes from the molecular level. We study here the case where stochastic particles, which represent proteins or molecules can switch between two states inside the non-negative real line. The switching process is modeled as a two-state Markov chain and particles can only escape in state 1. We estimate the fastest arrival time by solving asymptotically the Fokker–Planck equations for three different initial distributions: Dirac-delta, uniformly distributed and long-tail decay. The derived formulas reveal that the fastest particle avoids switching when the switching rates are much smaller than the diffusion time scale, but switches twice when the diffusion in state 2 is much faster than in state 1. The present results are compared to stochastic simulations revealing the range of validity of the derived formulas. Graphic abstract</description><subject>Analysis</subject><subject>Brownian motion</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Diffusion rate</subject><subject>Extreme Value Statistics and Search in Biology: Theory and Simulations</subject><subject>Fluid- and Aerodynamics</subject><subject>Fokker-Planck equation</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Particle decay</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid State Physics</subject><subject>Switches</subject><subject>Switching</subject><subject>Topical Review - Statistical and Nonlinear Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkV1PwyAUhhujiZ-_wSZeedF5Tgu0vVwWdUsWTfy4JozCxtKVCWzqv5dZ4-KVIeEc4HnJC2-SXCIMEAncqPVyduMRgGIGeZ4BFIxleJCcIClIxuLy8LfPq-Pk1PslACBDcpKMhs6ZrWjTYFYq1dalYRGr8EH5kIqV7ebpQ-rfTZALE3sfrFzEUyPTtXCxtMqfJ0datF5d_NSz5PXu9mU0zqaP95PRcJpJQjBkZEYUYaiLstQCUbGSUUVmVVNriVIxipQ1VMS5krrBqgGhG6CqqEVNC9oUZ8l1f-9CtHztzEq4T26F4ePhlO_2gCDEL8EtRvaqZ9fOvm3iW_jSblwX7fGc1TkWDGgVqUFPzUWruOm0DU7IOBq1MtJ2Spu4PywR6poQyPcWfgSRCeojzMXGez55fvrLlj0rnfXeKf3rGYHvouO76HgfHY_R8e_o-M581St9VHRz5fbm_5N-ASItnQo</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Toste, S.</creator><creator>Holcman, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5909-2566</orcidid><orcidid>https://orcid.org/0000-0001-9854-5014</orcidid></search><sort><creationdate>20220701</creationdate><title>Arrival time for the fastest among N switching stochastic particles</title><author>Toste, S. ; Holcman, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-4b4e461f377fa11e6765e4b8d9fc1ce65156d5a1568cfd18d0afd05e39a9535d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Brownian motion</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Diffusion rate</topic><topic>Extreme Value Statistics and Search in Biology: Theory and Simulations</topic><topic>Fluid- and Aerodynamics</topic><topic>Fokker-Planck equation</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Particle decay</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid State Physics</topic><topic>Switches</topic><topic>Switching</topic><topic>Topical Review - Statistical and Nonlinear Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toste, S.</creatorcontrib><creatorcontrib>Holcman, D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toste, S.</au><au>Holcman, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arrival time for the fastest among N switching stochastic particles</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>95</volume><issue>7</issue><artnum>113</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>The first arrivals among N Brownian particles is ubiquitous in the life sciences, as it often triggers cellular processes from the molecular level. We study here the case where stochastic particles, which represent proteins or molecules can switch between two states inside the non-negative real line. The switching process is modeled as a two-state Markov chain and particles can only escape in state 1. We estimate the fastest arrival time by solving asymptotically the Fokker–Planck equations for three different initial distributions: Dirac-delta, uniformly distributed and long-tail decay. The derived formulas reveal that the fastest particle avoids switching when the switching rates are much smaller than the diffusion time scale, but switches twice when the diffusion in state 2 is much faster than in state 1. The present results are compared to stochastic simulations revealing the range of validity of the derived formulas. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00366-1</doi><orcidid>https://orcid.org/0000-0002-5909-2566</orcidid><orcidid>https://orcid.org/0000-0001-9854-5014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2022-07, Vol.95 (7), Article 113
issn 1434-6028
1434-6036
language eng
recordid cdi_hal_primary_oai_HAL_hal_04101401v1
source SpringerLink Journals
subjects Analysis
Brownian motion
Complex Systems
Condensed Matter Physics
Diffusion rate
Extreme Value Statistics and Search in Biology: Theory and Simulations
Fluid- and Aerodynamics
Fokker-Planck equation
Markov chains
Markov processes
Mathematics
Particle decay
Physics
Physics and Astronomy
Solid State Physics
Switches
Switching
Topical Review - Statistical and Nonlinear Physics
title Arrival time for the fastest among N switching stochastic particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arrival%20time%20for%20the%20fastest%20among%20N%20switching%20stochastic%20particles&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Toste,%20S.&rft.date=2022-07-01&rft.volume=95&rft.issue=7&rft.artnum=113&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00366-1&rft_dat=%3Cgale_hal_p%3EA710994402%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692136058&rft_id=info:pmid/&rft_galeid=A710994402&rfr_iscdi=true