Fixing the Flux: A Dual Approach to Computing Transport Coefficients
We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induc...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2024-01, Vol.191 (2), Article 17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 191 |
creator | Blassel, N. Stoltz, G. |
description | We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives. |
doi_str_mv | 10.1007/s10955-024-03230-x |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04099515v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780832781</galeid><sourcerecordid>A780832781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-67086b63019deedd6ebae7126ce18372e91fc377b36af0e8ca901247e1996703</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFOvHqovzdo03srmnDDwsnvI0tcto2tK0kr99qZWxJPk8MKf_-89-BFyT-GRAvAnT0GkaQzJIgaWMIiHCzKjKU9ikVF2-ed_TW68PwGAyEU6I6u1GUxziLojRuu6H56jIlr1qo6KtnVW6WPU2Whpz23fjbWdU41vretChlVltMGm87fkqlK1x7ufOSe79ctuuYm3769vy2Iba0bTLs445Nk-Y0BFiViWGe4VcppkGmnOeIKCVppxvmeZqgBzrQTQZMGRChFYNicP09qjqmXrzFm5T2mVkZtiK8cMFiBEStMPGrqPU_egapSmqWznlA6vxLPRtsHKhLzgOeQs4fkIJBOgnfXeYfV7gYIcHcvJsQyO5bdjOQSITZAP5eaATp5s75rg4D_qC4Lofa0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</title><source>SpringerLink Journals</source><creator>Blassel, N. ; Stoltz, G.</creator><creatorcontrib>Blassel, N. ; Stoltz, G.</creatorcontrib><description>We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-024-03230-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Condensed Matter ; Mathematical and Computational Physics ; Mathematics ; Molecular dynamics ; Numerical Analysis ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Simulation methods ; Statistical Mechanics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2024-01, Vol.191 (2), Article 17</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-67086b63019deedd6ebae7126ce18372e91fc377b36af0e8ca901247e1996703</cites><orcidid>0000-0001-5957-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-024-03230-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-024-03230-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04099515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blassel, N.</creatorcontrib><creatorcontrib>Stoltz, G.</creatorcontrib><title>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.</description><subject>Condensed Matter</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Molecular dynamics</subject><subject>Numerical Analysis</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Simulation methods</subject><subject>Statistical Mechanics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFOvHqovzdo03srmnDDwsnvI0tcto2tK0kr99qZWxJPk8MKf_-89-BFyT-GRAvAnT0GkaQzJIgaWMIiHCzKjKU9ikVF2-ed_TW68PwGAyEU6I6u1GUxziLojRuu6H56jIlr1qo6KtnVW6WPU2Whpz23fjbWdU41vretChlVltMGm87fkqlK1x7ufOSe79ctuuYm3769vy2Iba0bTLs445Nk-Y0BFiViWGe4VcppkGmnOeIKCVppxvmeZqgBzrQTQZMGRChFYNicP09qjqmXrzFm5T2mVkZtiK8cMFiBEStMPGrqPU_egapSmqWznlA6vxLPRtsHKhLzgOeQs4fkIJBOgnfXeYfV7gYIcHcvJsQyO5bdjOQSITZAP5eaATp5s75rg4D_qC4Lofa0</recordid><startdate>20240128</startdate><enddate>20240128</enddate><creator>Blassel, N.</creator><creator>Stoltz, G.</creator><general>Springer US</general><general>Springer</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5957-2060</orcidid></search><sort><creationdate>20240128</creationdate><title>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</title><author>Blassel, N. ; Stoltz, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-67086b63019deedd6ebae7126ce18372e91fc377b36af0e8ca901247e1996703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Molecular dynamics</topic><topic>Numerical Analysis</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Simulation methods</topic><topic>Statistical Mechanics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blassel, N.</creatorcontrib><creatorcontrib>Stoltz, G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blassel, N.</au><au>Stoltz, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2024-01-28</date><risdate>2024</risdate><volume>191</volume><issue>2</issue><artnum>17</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-024-03230-x</doi><orcidid>https://orcid.org/0000-0001-5957-2060</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-9613 |
ispartof | Journal of statistical physics, 2024-01, Vol.191 (2), Article 17 |
issn | 1572-9613 0022-4715 1572-9613 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04099515v1 |
source | SpringerLink Journals |
subjects | Condensed Matter Mathematical and Computational Physics Mathematics Molecular dynamics Numerical Analysis Physical Chemistry Physics Physics and Astronomy Quantum Physics Simulation methods Statistical Mechanics Statistical Physics and Dynamical Systems Theoretical |
title | Fixing the Flux: A Dual Approach to Computing Transport Coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixing%20the%20Flux:%20A%20Dual%20Approach%20to%20Computing%20Transport%20Coefficients&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Blassel,%20N.&rft.date=2024-01-28&rft.volume=191&rft.issue=2&rft.artnum=17&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-024-03230-x&rft_dat=%3Cgale_hal_p%3EA780832781%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A780832781&rfr_iscdi=true |