Fixing the Flux: A Dual Approach to Computing Transport Coefficients

We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2024-01, Vol.191 (2), Article 17
Hauptverfasser: Blassel, N., Stoltz, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of statistical physics
container_volume 191
creator Blassel, N.
Stoltz, G.
description We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.
doi_str_mv 10.1007/s10955-024-03230-x
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04099515v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780832781</galeid><sourcerecordid>A780832781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-67086b63019deedd6ebae7126ce18372e91fc377b36af0e8ca901247e1996703</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKdfwFOvHqovzdo03srmnDDwsnvI0tcto2tK0kr99qZWxJPk8MKf_-89-BFyT-GRAvAnT0GkaQzJIgaWMIiHCzKjKU9ikVF2-ed_TW68PwGAyEU6I6u1GUxziLojRuu6H56jIlr1qo6KtnVW6WPU2Whpz23fjbWdU41vretChlVltMGm87fkqlK1x7ufOSe79ctuuYm3769vy2Iba0bTLs445Nk-Y0BFiViWGe4VcppkGmnOeIKCVppxvmeZqgBzrQTQZMGRChFYNicP09qjqmXrzFm5T2mVkZtiK8cMFiBEStMPGrqPU_egapSmqWznlA6vxLPRtsHKhLzgOeQs4fkIJBOgnfXeYfV7gYIcHcvJsQyO5bdjOQSITZAP5eaATp5s75rg4D_qC4Lofa0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</title><source>SpringerLink Journals</source><creator>Blassel, N. ; Stoltz, G.</creator><creatorcontrib>Blassel, N. ; Stoltz, G.</creatorcontrib><description>We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.</description><identifier>ISSN: 1572-9613</identifier><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-024-03230-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Condensed Matter ; Mathematical and Computational Physics ; Mathematics ; Molecular dynamics ; Numerical Analysis ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Simulation methods ; Statistical Mechanics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2024-01, Vol.191 (2), Article 17</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-67086b63019deedd6ebae7126ce18372e91fc377b36af0e8ca901247e1996703</cites><orcidid>0000-0001-5957-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-024-03230-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-024-03230-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04099515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blassel, N.</creatorcontrib><creatorcontrib>Stoltz, G.</creatorcontrib><title>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.</description><subject>Condensed Matter</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Molecular dynamics</subject><subject>Numerical Analysis</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Simulation methods</subject><subject>Statistical Mechanics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>1572-9613</issn><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKdfwFOvHqovzdo03srmnDDwsnvI0tcto2tK0kr99qZWxJPk8MKf_-89-BFyT-GRAvAnT0GkaQzJIgaWMIiHCzKjKU9ikVF2-ed_TW68PwGAyEU6I6u1GUxziLojRuu6H56jIlr1qo6KtnVW6WPU2Whpz23fjbWdU41vretChlVltMGm87fkqlK1x7ufOSe79ctuuYm3769vy2Iba0bTLs445Nk-Y0BFiViWGe4VcppkGmnOeIKCVppxvmeZqgBzrQTQZMGRChFYNicP09qjqmXrzFm5T2mVkZtiK8cMFiBEStMPGrqPU_egapSmqWznlA6vxLPRtsHKhLzgOeQs4fkIJBOgnfXeYfV7gYIcHcvJsQyO5bdjOQSITZAP5eaATp5s75rg4D_qC4Lofa0</recordid><startdate>20240128</startdate><enddate>20240128</enddate><creator>Blassel, N.</creator><creator>Stoltz, G.</creator><general>Springer US</general><general>Springer</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5957-2060</orcidid></search><sort><creationdate>20240128</creationdate><title>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</title><author>Blassel, N. ; Stoltz, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-67086b63019deedd6ebae7126ce18372e91fc377b36af0e8ca901247e1996703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Molecular dynamics</topic><topic>Numerical Analysis</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Simulation methods</topic><topic>Statistical Mechanics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blassel, N.</creatorcontrib><creatorcontrib>Stoltz, G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blassel, N.</au><au>Stoltz, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixing the Flux: A Dual Approach to Computing Transport Coefficients</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2024-01-28</date><risdate>2024</risdate><volume>191</volume><issue>2</issue><artnum>17</artnum><issn>1572-9613</issn><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We present a method to compute transport coefficients in molecular dynamics. Transport coefficients quantify the linear dependencies of fluxes in non-equilibrium systems subject to small external forcings. Whereas standard non-equilibrium approaches fix the forcing and measure the average flux induced in the system driven out of equilibrium, a dual philosophy consists in fixing the value of the flux, and measuring the average magnitude of the forcing needed to induce it. A deterministic version of this approach, named Norton dynamics, was studied in the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of this method, first developing a general formal theory for a broad class of diffusion processes, and then specializing it to underdamped Langevin dynamics, which are commonly used for molecular dynamics simulations. We provide numerical evidence that the stochastic Norton method provides an equivalent measure of the linear response, and in fact demonstrate that this equivalence extends well beyond the linear response regime. This work raises many intriguing questions, both from the theoretical and the numerical perspectives.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-024-03230-x</doi><orcidid>https://orcid.org/0000-0001-5957-2060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-9613
ispartof Journal of statistical physics, 2024-01, Vol.191 (2), Article 17
issn 1572-9613
0022-4715
1572-9613
language eng
recordid cdi_hal_primary_oai_HAL_hal_04099515v1
source SpringerLink Journals
subjects Condensed Matter
Mathematical and Computational Physics
Mathematics
Molecular dynamics
Numerical Analysis
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Simulation methods
Statistical Mechanics
Statistical Physics and Dynamical Systems
Theoretical
title Fixing the Flux: A Dual Approach to Computing Transport Coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixing%20the%20Flux:%20A%20Dual%20Approach%20to%20Computing%20Transport%20Coefficients&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Blassel,%20N.&rft.date=2024-01-28&rft.volume=191&rft.issue=2&rft.artnum=17&rft.issn=1572-9613&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-024-03230-x&rft_dat=%3Cgale_hal_p%3EA780832781%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A780832781&rfr_iscdi=true