Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing
In this work, the cold spray additive manufacturing technology was applied for producing composite AA7075 deposits reinforced by silicon carbide particles. It was found that ceramic content in the composite did not exceed 21–25 %vol. Different heat treatments and capsule-free hot isostatic pressing...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-09, Vol.116 (3-4), p.847-861 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 861 |
---|---|
container_issue | 3-4 |
container_start_page | 847 |
container_title | International journal of advanced manufacturing technology |
container_volume | 116 |
creator | Khomutov, Maxim Spasenko, Anastasia Sova, Alexey Petrovskiy, Pavel Cheverikin, Vladimir Travyanov, Andrey Smurov, Igor |
description | In this work, the cold spray additive manufacturing technology was applied for producing composite AA7075 deposits reinforced by silicon carbide particles. It was found that ceramic content in the composite did not exceed 21–25 %vol. Different heat treatments and capsule-free hot isostatic pressing (HIP) were performed to homogenise the structure of the AA7075-SiC composite. The microstructure of the composite before and after heat treatments was analysed using SEM and TEM analysis and compared with bulk AA7075. The analysis showed that the presence of SiC in the composite influenced the distribution of hardening phases in AA7075 during heat treatment. The presence of uniformly distributed SiC particles accelerated the decomposition of the supersaturated aluminium solid solution during ageing. The decomposition process blocked the formation of large hardening precipitates at the grain boundaries generally observed at the bulk metallic alloy AA7075. The compressive strength tests revealed the improvement of the strain at failure of the composite deposits after heat treatment and HIP. At the same time, the compressive strength slightly decreased. The thermal expansion coefficient (TEC) of AA7075-SiC20% composite was lower than for the base bulk AA7075. The dilatation behaviour of the composite during TEC tests could be approximated using the simple rule of mixture. |
doi_str_mv | 10.1007/s00170-021-07457-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04084003v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557309091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268w-48c9e2ce7207f31ddd2fa42f2f276811b6615c6aab1aa3a7fc6f8bd884729f443</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgykX05mcm02UpaoWCi-o6pPnRKW1nTGZa-hZ9tD6SGUd0J3cRuPnO4dyD0DWFOwog7yMAlUCAUQJSZJLsTtCACs4JB5qdogGwvCBc5sU5uohxmfCc5sUA-XkTWtO0wWG9sbgOVe1CU7qIK4-Ph-NBgszIvJxgU63rKpaNw7UOTexQ2xpn8WKf_lYWxzroPdbWlk25dXitN63XnXW5eb9EZ16vorv6eYfo7fHhdTIls5en58l4RkzKtyOiMCPHjJMMpOfUWsu8FsynSdEpXeQ5zUyu9YJqzbX0JvfFwhaFkGzkheBDdNv7fuiVqkO51mGvKl2q6Ximuh0IKAQA39LE3vRsuuSzdbFRy6oNmxRPsSyTHEYw6ijWUyZUMQbnf20pqK571XevUvfqu3u1SyLei1In6XoX_qz_UX0Bj3mI0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557309091</pqid></control><display><type>article</type><title>Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing</title><source>SpringerNature Journals</source><creator>Khomutov, Maxim ; Spasenko, Anastasia ; Sova, Alexey ; Petrovskiy, Pavel ; Cheverikin, Vladimir ; Travyanov, Andrey ; Smurov, Igor</creator><creatorcontrib>Khomutov, Maxim ; Spasenko, Anastasia ; Sova, Alexey ; Petrovskiy, Pavel ; Cheverikin, Vladimir ; Travyanov, Andrey ; Smurov, Igor</creatorcontrib><description>In this work, the cold spray additive manufacturing technology was applied for producing composite AA7075 deposits reinforced by silicon carbide particles. It was found that ceramic content in the composite did not exceed 21–25 %vol. Different heat treatments and capsule-free hot isostatic pressing (HIP) were performed to homogenise the structure of the AA7075-SiC composite. The microstructure of the composite before and after heat treatments was analysed using SEM and TEM analysis and compared with bulk AA7075. The analysis showed that the presence of SiC in the composite influenced the distribution of hardening phases in AA7075 during heat treatment. The presence of uniformly distributed SiC particles accelerated the decomposition of the supersaturated aluminium solid solution during ageing. The decomposition process blocked the formation of large hardening precipitates at the grain boundaries generally observed at the bulk metallic alloy AA7075. The compressive strength tests revealed the improvement of the strain at failure of the composite deposits after heat treatment and HIP. At the same time, the compressive strength slightly decreased. The thermal expansion coefficient (TEC) of AA7075-SiC20% composite was lower than for the base bulk AA7075. The dilatation behaviour of the composite during TEC tests could be approximated using the simple rule of mixture.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07457-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Aluminum base alloys ; CAE) and Design ; Cold working ; Compressive strength ; Computer-Aided Engineering (CAD ; Decomposition ; Engineering ; Engineering Sciences ; Grain boundaries ; Heat treating ; Heat treatment ; Hot isostatic pressing ; Industrial and Production Engineering ; Mechanical Engineering ; Media Management ; Original Article ; Precipitates ; Silicon carbide ; Solid solutions ; Thermal expansion</subject><ispartof>International journal of advanced manufacturing technology, 2021-09, Vol.116 (3-4), p.847-861</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268w-48c9e2ce7207f31ddd2fa42f2f276811b6615c6aab1aa3a7fc6f8bd884729f443</citedby><cites>FETCH-LOGICAL-c268w-48c9e2ce7207f31ddd2fa42f2f276811b6615c6aab1aa3a7fc6f8bd884729f443</cites><orcidid>0000-0002-7701-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07457-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07457-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04084003$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khomutov, Maxim</creatorcontrib><creatorcontrib>Spasenko, Anastasia</creatorcontrib><creatorcontrib>Sova, Alexey</creatorcontrib><creatorcontrib>Petrovskiy, Pavel</creatorcontrib><creatorcontrib>Cheverikin, Vladimir</creatorcontrib><creatorcontrib>Travyanov, Andrey</creatorcontrib><creatorcontrib>Smurov, Igor</creatorcontrib><title>Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In this work, the cold spray additive manufacturing technology was applied for producing composite AA7075 deposits reinforced by silicon carbide particles. It was found that ceramic content in the composite did not exceed 21–25 %vol. Different heat treatments and capsule-free hot isostatic pressing (HIP) were performed to homogenise the structure of the AA7075-SiC composite. The microstructure of the composite before and after heat treatments was analysed using SEM and TEM analysis and compared with bulk AA7075. The analysis showed that the presence of SiC in the composite influenced the distribution of hardening phases in AA7075 during heat treatment. The presence of uniformly distributed SiC particles accelerated the decomposition of the supersaturated aluminium solid solution during ageing. The decomposition process blocked the formation of large hardening precipitates at the grain boundaries generally observed at the bulk metallic alloy AA7075. The compressive strength tests revealed the improvement of the strain at failure of the composite deposits after heat treatment and HIP. At the same time, the compressive strength slightly decreased. The thermal expansion coefficient (TEC) of AA7075-SiC20% composite was lower than for the base bulk AA7075. The dilatation behaviour of the composite during TEC tests could be approximated using the simple rule of mixture.</description><subject>Additive manufacturing</subject><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Cold working</subject><subject>Compressive strength</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Grain boundaries</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Hot isostatic pressing</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Precipitates</subject><subject>Silicon carbide</subject><subject>Solid solutions</subject><subject>Thermal expansion</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgykX05mcm02UpaoWCi-o6pPnRKW1nTGZa-hZ9tD6SGUd0J3cRuPnO4dyD0DWFOwog7yMAlUCAUQJSZJLsTtCACs4JB5qdogGwvCBc5sU5uohxmfCc5sUA-XkTWtO0wWG9sbgOVe1CU7qIK4-Ph-NBgszIvJxgU63rKpaNw7UOTexQ2xpn8WKf_lYWxzroPdbWlk25dXitN63XnXW5eb9EZ16vorv6eYfo7fHhdTIls5en58l4RkzKtyOiMCPHjJMMpOfUWsu8FsynSdEpXeQ5zUyu9YJqzbX0JvfFwhaFkGzkheBDdNv7fuiVqkO51mGvKl2q6Ximuh0IKAQA39LE3vRsuuSzdbFRy6oNmxRPsSyTHEYw6ijWUyZUMQbnf20pqK571XevUvfqu3u1SyLei1In6XoX_qz_UX0Bj3mI0w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khomutov, Maxim</creator><creator>Spasenko, Anastasia</creator><creator>Sova, Alexey</creator><creator>Petrovskiy, Pavel</creator><creator>Cheverikin, Vladimir</creator><creator>Travyanov, Andrey</creator><creator>Smurov, Igor</creator><general>Springer London</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7701-1600</orcidid></search><sort><creationdate>20210901</creationdate><title>Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing</title><author>Khomutov, Maxim ; Spasenko, Anastasia ; Sova, Alexey ; Petrovskiy, Pavel ; Cheverikin, Vladimir ; Travyanov, Andrey ; Smurov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268w-48c9e2ce7207f31ddd2fa42f2f276811b6615c6aab1aa3a7fc6f8bd884729f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additive manufacturing</topic><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Cold working</topic><topic>Compressive strength</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Grain boundaries</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Hot isostatic pressing</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Precipitates</topic><topic>Silicon carbide</topic><topic>Solid solutions</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khomutov, Maxim</creatorcontrib><creatorcontrib>Spasenko, Anastasia</creatorcontrib><creatorcontrib>Sova, Alexey</creatorcontrib><creatorcontrib>Petrovskiy, Pavel</creatorcontrib><creatorcontrib>Cheverikin, Vladimir</creatorcontrib><creatorcontrib>Travyanov, Andrey</creatorcontrib><creatorcontrib>Smurov, Igor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khomutov, Maxim</au><au>Spasenko, Anastasia</au><au>Sova, Alexey</au><au>Petrovskiy, Pavel</au><au>Cheverikin, Vladimir</au><au>Travyanov, Andrey</au><au>Smurov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>116</volume><issue>3-4</issue><spage>847</spage><epage>861</epage><pages>847-861</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this work, the cold spray additive manufacturing technology was applied for producing composite AA7075 deposits reinforced by silicon carbide particles. It was found that ceramic content in the composite did not exceed 21–25 %vol. Different heat treatments and capsule-free hot isostatic pressing (HIP) were performed to homogenise the structure of the AA7075-SiC composite. The microstructure of the composite before and after heat treatments was analysed using SEM and TEM analysis and compared with bulk AA7075. The analysis showed that the presence of SiC in the composite influenced the distribution of hardening phases in AA7075 during heat treatment. The presence of uniformly distributed SiC particles accelerated the decomposition of the supersaturated aluminium solid solution during ageing. The decomposition process blocked the formation of large hardening precipitates at the grain boundaries generally observed at the bulk metallic alloy AA7075. The compressive strength tests revealed the improvement of the strain at failure of the composite deposits after heat treatment and HIP. At the same time, the compressive strength slightly decreased. The thermal expansion coefficient (TEC) of AA7075-SiC20% composite was lower than for the base bulk AA7075. The dilatation behaviour of the composite during TEC tests could be approximated using the simple rule of mixture.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07457-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7701-1600</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021-09, Vol.116 (3-4), p.847-861 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04084003v1 |
source | SpringerNature Journals |
subjects | Additive manufacturing Aluminum base alloys CAE) and Design Cold working Compressive strength Computer-Aided Engineering (CAD Decomposition Engineering Engineering Sciences Grain boundaries Heat treating Heat treatment Hot isostatic pressing Industrial and Production Engineering Mechanical Engineering Media Management Original Article Precipitates Silicon carbide Solid solutions Thermal expansion |
title | Structure and properties of АА7075-SiC composite parts produced by cold spray additive manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20properties%20of%20%D0%90%D0%907075-SiC%20composite%20parts%20produced%20by%20cold%20spray%20additive%20manufacturing&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Khomutov,%20Maxim&rft.date=2021-09-01&rft.volume=116&rft.issue=3-4&rft.spage=847&rft.epage=861&rft.pages=847-861&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07457-w&rft_dat=%3Cproquest_hal_p%3E2557309091%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557309091&rft_id=info:pmid/&rfr_iscdi=true |