Analysis and Physical Interpretation of the Uncertainty Effect in Structural Dynamics
AbstractIn order to determine the steady-state response of random dynamical systems, the polynomial chaos expansion (PCE) approach appears to be the most suitable, but its convergence is weak around the eigenfrequencies. Indeed, increasing the order of the polynomial creates a side effect, which dec...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mechanics 2022-02, Vol.148 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of engineering mechanics |
container_volume | 148 |
creator | Jézéquel, Louis de Filippis, Hugo Mercier, Alexy |
description | AbstractIn order to determine the steady-state response of random dynamical systems, the polynomial chaos expansion (PCE) approach appears to be the most suitable, but its convergence is weak around the eigenfrequencies. Indeed, increasing the order of the polynomial creates a side effect, which decreases the convergence of the expansion. Previous studies used convergence accelerating methods to reduce this side effect and the main aim of this study is to present an original approach to obtain a closed-form solution for a class of random dynamical system. The analytical developments are based on the introduction of a new class of modes called eigenmodes of perturbation and on the resolution of periodic systems. This approach gives a physical interpretation of the damping effect observed on the mean response of linear random dynamical systems by referring to the propagation of waves in a fictitious semiperiodic system associated with the eigenmodes of perturbation. The dynamic models used to expose the method are simple but the study is extended to complex structures using modal synthesis. |
doi_str_mv | 10.1061/(ASCE)EM.1943-7889.0002040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04083030v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604331262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-3ad2e08afbbd148615d5984e432eadb5e712d7be5b3043c131773f26731cfa7b3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKf_IeiNu-jMV9PWuzGrG2wozF2HNE1ZR9fOJBX6703pnFdencPhfV44DwD3GE0x4vjpcbaZp5N0PcUJo0EUx8kUIUQQQxdgdL5dghGKKA0SmiTX4MbaPUKY8YSPwHZWy6qzpYWyzuHHzq9KVnBZO22ORjvpyqaGTQHdTsNtrbRxsqxdB9Oi0MrBsoYbZ1rlWuOxl66Wh1LZW3BVyMrqu9Mcg-1r-jlfBKv3t-V8tgokI8QFVOZEo1gWWZZjFnMc5mESM80o0TLPQh1hkkeZDjOKGFWY4iiiBeERxaqQUUbHYDL07mQljqY8SNOJRpZiMVuJ_uZFxBRR9I199mHIHk3z1WrrxL5pjf_eCsJ9PcWEE596HlLKNNYaXZxrMRK9ciF65SJdi16v6PWKk3IP8wGWVum_-l_yf_AHUA6E0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604331262</pqid></control><display><type>article</type><title>Analysis and Physical Interpretation of the Uncertainty Effect in Structural Dynamics</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Jézéquel, Louis ; de Filippis, Hugo ; Mercier, Alexy</creator><creatorcontrib>Jézéquel, Louis ; de Filippis, Hugo ; Mercier, Alexy</creatorcontrib><description>AbstractIn order to determine the steady-state response of random dynamical systems, the polynomial chaos expansion (PCE) approach appears to be the most suitable, but its convergence is weak around the eigenfrequencies. Indeed, increasing the order of the polynomial creates a side effect, which decreases the convergence of the expansion. Previous studies used convergence accelerating methods to reduce this side effect and the main aim of this study is to present an original approach to obtain a closed-form solution for a class of random dynamical system. The analytical developments are based on the introduction of a new class of modes called eigenmodes of perturbation and on the resolution of periodic systems. This approach gives a physical interpretation of the damping effect observed on the mean response of linear random dynamical systems by referring to the propagation of waves in a fictitious semiperiodic system associated with the eigenmodes of perturbation. The dynamic models used to expose the method are simple but the study is extended to complex structures using modal synthesis.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)EM.1943-7889.0002040</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Convergence ; Damping ; Dynamic models ; Dynamic structural analysis ; Dynamical systems ; Engineering Sciences ; Mathematical analysis ; Perturbation ; Polynomials ; Resonant frequencies ; Technical Papers ; Wave propagation</subject><ispartof>Journal of engineering mechanics, 2022-02, Vol.148 (2)</ispartof><rights>This work is made available under the terms of the Creative Commons Attribution 4.0 International license, .</rights><rights>Copyright American Society of Civil Engineers Feb 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-3ad2e08afbbd148615d5984e432eadb5e712d7be5b3043c131773f26731cfa7b3</citedby><cites>FETCH-LOGICAL-a422t-3ad2e08afbbd148615d5984e432eadb5e712d7be5b3043c131773f26731cfa7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EM.1943-7889.0002040$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0002040$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,75939,75947</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04083030$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jézéquel, Louis</creatorcontrib><creatorcontrib>de Filippis, Hugo</creatorcontrib><creatorcontrib>Mercier, Alexy</creatorcontrib><title>Analysis and Physical Interpretation of the Uncertainty Effect in Structural Dynamics</title><title>Journal of engineering mechanics</title><description>AbstractIn order to determine the steady-state response of random dynamical systems, the polynomial chaos expansion (PCE) approach appears to be the most suitable, but its convergence is weak around the eigenfrequencies. Indeed, increasing the order of the polynomial creates a side effect, which decreases the convergence of the expansion. Previous studies used convergence accelerating methods to reduce this side effect and the main aim of this study is to present an original approach to obtain a closed-form solution for a class of random dynamical system. The analytical developments are based on the introduction of a new class of modes called eigenmodes of perturbation and on the resolution of periodic systems. This approach gives a physical interpretation of the damping effect observed on the mean response of linear random dynamical systems by referring to the propagation of waves in a fictitious semiperiodic system associated with the eigenmodes of perturbation. The dynamic models used to expose the method are simple but the study is extended to complex structures using modal synthesis.</description><subject>Convergence</subject><subject>Damping</subject><subject>Dynamic models</subject><subject>Dynamic structural analysis</subject><subject>Dynamical systems</subject><subject>Engineering Sciences</subject><subject>Mathematical analysis</subject><subject>Perturbation</subject><subject>Polynomials</subject><subject>Resonant frequencies</subject><subject>Technical Papers</subject><subject>Wave propagation</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKf_IeiNu-jMV9PWuzGrG2wozF2HNE1ZR9fOJBX6703pnFdencPhfV44DwD3GE0x4vjpcbaZp5N0PcUJo0EUx8kUIUQQQxdgdL5dghGKKA0SmiTX4MbaPUKY8YSPwHZWy6qzpYWyzuHHzq9KVnBZO22ORjvpyqaGTQHdTsNtrbRxsqxdB9Oi0MrBsoYbZ1rlWuOxl66Wh1LZW3BVyMrqu9Mcg-1r-jlfBKv3t-V8tgokI8QFVOZEo1gWWZZjFnMc5mESM80o0TLPQh1hkkeZDjOKGFWY4iiiBeERxaqQUUbHYDL07mQljqY8SNOJRpZiMVuJ_uZFxBRR9I199mHIHk3z1WrrxL5pjf_eCsJ9PcWEE596HlLKNNYaXZxrMRK9ciF65SJdi16v6PWKk3IP8wGWVum_-l_yf_AHUA6E0Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Jézéquel, Louis</creator><creator>de Filippis, Hugo</creator><creator>Mercier, Alexy</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20220201</creationdate><title>Analysis and Physical Interpretation of the Uncertainty Effect in Structural Dynamics</title><author>Jézéquel, Louis ; de Filippis, Hugo ; Mercier, Alexy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-3ad2e08afbbd148615d5984e432eadb5e712d7be5b3043c131773f26731cfa7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Damping</topic><topic>Dynamic models</topic><topic>Dynamic structural analysis</topic><topic>Dynamical systems</topic><topic>Engineering Sciences</topic><topic>Mathematical analysis</topic><topic>Perturbation</topic><topic>Polynomials</topic><topic>Resonant frequencies</topic><topic>Technical Papers</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jézéquel, Louis</creatorcontrib><creatorcontrib>de Filippis, Hugo</creatorcontrib><creatorcontrib>Mercier, Alexy</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jézéquel, Louis</au><au>de Filippis, Hugo</au><au>Mercier, Alexy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Physical Interpretation of the Uncertainty Effect in Structural Dynamics</atitle><jtitle>Journal of engineering mechanics</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>148</volume><issue>2</issue><issn>0733-9399</issn><eissn>1943-7889</eissn><abstract>AbstractIn order to determine the steady-state response of random dynamical systems, the polynomial chaos expansion (PCE) approach appears to be the most suitable, but its convergence is weak around the eigenfrequencies. Indeed, increasing the order of the polynomial creates a side effect, which decreases the convergence of the expansion. Previous studies used convergence accelerating methods to reduce this side effect and the main aim of this study is to present an original approach to obtain a closed-form solution for a class of random dynamical system. The analytical developments are based on the introduction of a new class of modes called eigenmodes of perturbation and on the resolution of periodic systems. This approach gives a physical interpretation of the damping effect observed on the mean response of linear random dynamical systems by referring to the propagation of waves in a fictitious semiperiodic system associated with the eigenmodes of perturbation. The dynamic models used to expose the method are simple but the study is extended to complex structures using modal synthesis.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EM.1943-7889.0002040</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9399 |
ispartof | Journal of engineering mechanics, 2022-02, Vol.148 (2) |
issn | 0733-9399 1943-7889 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04083030v1 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Convergence Damping Dynamic models Dynamic structural analysis Dynamical systems Engineering Sciences Mathematical analysis Perturbation Polynomials Resonant frequencies Technical Papers Wave propagation |
title | Analysis and Physical Interpretation of the Uncertainty Effect in Structural Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Physical%20Interpretation%20of%20the%20Uncertainty%20Effect%20in%20Structural%20Dynamics&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=J%C3%A9z%C3%A9quel,%20Louis&rft.date=2022-02-01&rft.volume=148&rft.issue=2&rft.issn=0733-9399&rft.eissn=1943-7889&rft_id=info:doi/10.1061/(ASCE)EM.1943-7889.0002040&rft_dat=%3Cproquest_hal_p%3E2604331262%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604331262&rft_id=info:pmid/&rfr_iscdi=true |