Local Chain Deformation and Overstrain in Reinforced Elastomers: An NMR Study

A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2013-07, Vol.46 (14), p.5549-5560
Hauptverfasser: Pérez-Aparicio, Roberto, Schiewek, Martin, Valentín, Juan López, Schneider, Horst, Long, Didier R, Saphiannikova, Marina, Sotta, Paul, Saalwächter, Kay, Ott, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A molecular-level understanding of the strain response of elastomers is a key to connect microscopic dynamics to macroscopic properties. In this study we investigate the local strain response of vulcanized, natural rubber systems and the effect of nanometer-sized filler particles, which are known to lead to highly improved mechanical properties. A multiple-quantum NMR approach enables the separation of relatively low fractions of network defects and allows to quantitatively and selectively study the local deformation distribution in the strained networks matrix on the microscopic (molecular) scale. We find that the presence of nondeformable filler particles induces an enhanced local deformation of the matrix (commonly referred to as overstrain), a slightly increased local stress/strain heterogeneity, and a reduced anisotropy. Furthermore, a careful analysis of the small nonelastic defect fraction provides new evidence that previous NMR and scattering results of strained defect-rich elastomers cannot be interpreted without explicitly taking the nonelastic defect fraction into account.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma400921k