Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions

This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2023-07, Vol.570, p.113778, Article 113778
Hauptverfasser: Yang, Fufang, Ngo, Tri Dat, Roa Pinto, Juan Sebastian, Kontogeorgis, Georgios M., de Hemptinne, Jean-Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113778
container_title Fluid phase equilibria
container_volume 570
creator Yang, Fufang
Ngo, Tri Dat
Roa Pinto, Juan Sebastian
Kontogeorgis, Georgios M.
de Hemptinne, Jean-Charles
description This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.
doi_str_mv 10.1016/j.fluid.2023.113778
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04073466v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381223000596</els_id><sourcerecordid>S0378381223000596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Ai-5euiajzZNDx6WxS9YUFDPYZpM2axdU5N2QX-9XSsevcwML-87zDyEXHA254yrq828aQfv5oIJOedclqU-IDOuyypjQuSHZMZkqTOpuTgmJyltGGO8UGJGuufP1OMWem8p7qAdxim809DQDiJsscfovyYNui4GsGtMtAmR9muk-PS0zJ4Xty90Gxy2Pzp8DBiGRKF9g9bT9Vgc0hTaYb8lnZGjBtqE57_9lLze3rws77PV493DcrHKrNSiz4AxkNq5oihy6wSzrK5UoUDUyqJWVV1IKJTTWALoutK10BaFrMuiqlkuUJ6Sy2nveIDpot9C_DQBvLlfrMxeYzkrZa7Ujo9eOXltDClFbP4CnJk9YLMxP4DNHrCZAI-p6ymF4xs7j9Ek6_HdovMRbW9c8P_mvwFzW4Zr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Fufang ; Ngo, Tri Dat ; Roa Pinto, Juan Sebastian ; Kontogeorgis, Georgios M. ; de Hemptinne, Jean-Charles</creator><creatorcontrib>Yang, Fufang ; Ngo, Tri Dat ; Roa Pinto, Juan Sebastian ; Kontogeorgis, Georgios M. ; de Hemptinne, Jean-Charles</creatorcontrib><description>This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/j.fluid.2023.113778</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Activity coefficient ; Aqueous electrolyte solutions ; Chemical Sciences ; Density ; Environmental Sciences ; Equation of state ; Vapor–liquid equilibria</subject><ispartof>Fluid phase equilibria, 2023-07, Vol.570, p.113778, Article 113778</ispartof><rights>2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</citedby><cites>FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</cites><orcidid>0000-0001-5977-6928 ; 0000-0003-1607-3960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378381223000596$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://ifp.hal.science/hal-04073466$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Fufang</creatorcontrib><creatorcontrib>Ngo, Tri Dat</creatorcontrib><creatorcontrib>Roa Pinto, Juan Sebastian</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>de Hemptinne, Jean-Charles</creatorcontrib><title>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</title><title>Fluid phase equilibria</title><description>This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.</description><subject>Activity coefficient</subject><subject>Aqueous electrolyte solutions</subject><subject>Chemical Sciences</subject><subject>Density</subject><subject>Environmental Sciences</subject><subject>Equation of state</subject><subject>Vapor–liquid equilibria</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Ai-5euiajzZNDx6WxS9YUFDPYZpM2axdU5N2QX-9XSsevcwML-87zDyEXHA254yrq828aQfv5oIJOedclqU-IDOuyypjQuSHZMZkqTOpuTgmJyltGGO8UGJGuufP1OMWem8p7qAdxim809DQDiJsscfovyYNui4GsGtMtAmR9muk-PS0zJ4Xty90Gxy2Pzp8DBiGRKF9g9bT9Vgc0hTaYb8lnZGjBtqE57_9lLze3rws77PV493DcrHKrNSiz4AxkNq5oihy6wSzrK5UoUDUyqJWVV1IKJTTWALoutK10BaFrMuiqlkuUJ6Sy2nveIDpot9C_DQBvLlfrMxeYzkrZa7Ujo9eOXltDClFbP4CnJk9YLMxP4DNHrCZAI-p6ymF4xs7j9Ek6_HdovMRbW9c8P_mvwFzW4Zr</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Yang, Fufang</creator><creator>Ngo, Tri Dat</creator><creator>Roa Pinto, Juan Sebastian</creator><creator>Kontogeorgis, Georgios M.</creator><creator>de Hemptinne, Jean-Charles</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5977-6928</orcidid><orcidid>https://orcid.org/0000-0003-1607-3960</orcidid></search><sort><creationdate>202307</creationdate><title>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</title><author>Yang, Fufang ; Ngo, Tri Dat ; Roa Pinto, Juan Sebastian ; Kontogeorgis, Georgios M. ; de Hemptinne, Jean-Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activity coefficient</topic><topic>Aqueous electrolyte solutions</topic><topic>Chemical Sciences</topic><topic>Density</topic><topic>Environmental Sciences</topic><topic>Equation of state</topic><topic>Vapor–liquid equilibria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fufang</creatorcontrib><creatorcontrib>Ngo, Tri Dat</creatorcontrib><creatorcontrib>Roa Pinto, Juan Sebastian</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>de Hemptinne, Jean-Charles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fufang</au><au>Ngo, Tri Dat</au><au>Roa Pinto, Juan Sebastian</au><au>Kontogeorgis, Georgios M.</au><au>de Hemptinne, Jean-Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</atitle><jtitle>Fluid phase equilibria</jtitle><date>2023-07</date><risdate>2023</risdate><volume>570</volume><spage>113778</spage><pages>113778-</pages><artnum>113778</artnum><issn>0378-3812</issn><eissn>1879-0224</eissn><abstract>This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fluid.2023.113778</doi><orcidid>https://orcid.org/0000-0001-5977-6928</orcidid><orcidid>https://orcid.org/0000-0003-1607-3960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 2023-07, Vol.570, p.113778, Article 113778
issn 0378-3812
1879-0224
language eng
recordid cdi_hal_primary_oai_HAL_hal_04073466v1
source Elsevier ScienceDirect Journals Complete
subjects Activity coefficient
Aqueous electrolyte solutions
Chemical Sciences
Density
Environmental Sciences
Equation of state
Vapor–liquid equilibria
title Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20evaluation%20of%20parameterization%20approaches%20for%20the%20ePPC-SAFT%20model%20for%20aqueous%20alkali%20halide%20solutions&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Yang,%20Fufang&rft.date=2023-07&rft.volume=570&rft.spage=113778&rft.pages=113778-&rft.artnum=113778&rft.issn=0378-3812&rft.eissn=1879-0224&rft_id=info:doi/10.1016/j.fluid.2023.113778&rft_dat=%3Celsevier_hal_p%3ES0378381223000596%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378381223000596&rfr_iscdi=true