Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions
This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-sol...
Gespeichert in:
Veröffentlicht in: | Fluid phase equilibria 2023-07, Vol.570, p.113778, Article 113778 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 113778 |
container_title | Fluid phase equilibria |
container_volume | 570 |
creator | Yang, Fufang Ngo, Tri Dat Roa Pinto, Juan Sebastian Kontogeorgis, Georgios M. de Hemptinne, Jean-Charles |
description | This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters. |
doi_str_mv | 10.1016/j.fluid.2023.113778 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04073466v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381223000596</els_id><sourcerecordid>S0378381223000596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Ai-5euiajzZNDx6WxS9YUFDPYZpM2axdU5N2QX-9XSsevcwML-87zDyEXHA254yrq828aQfv5oIJOedclqU-IDOuyypjQuSHZMZkqTOpuTgmJyltGGO8UGJGuufP1OMWem8p7qAdxim809DQDiJsscfovyYNui4GsGtMtAmR9muk-PS0zJ4Xty90Gxy2Pzp8DBiGRKF9g9bT9Vgc0hTaYb8lnZGjBtqE57_9lLze3rws77PV493DcrHKrNSiz4AxkNq5oihy6wSzrK5UoUDUyqJWVV1IKJTTWALoutK10BaFrMuiqlkuUJ6Sy2nveIDpot9C_DQBvLlfrMxeYzkrZa7Ujo9eOXltDClFbP4CnJk9YLMxP4DNHrCZAI-p6ymF4xs7j9Ek6_HdovMRbW9c8P_mvwFzW4Zr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Fufang ; Ngo, Tri Dat ; Roa Pinto, Juan Sebastian ; Kontogeorgis, Georgios M. ; de Hemptinne, Jean-Charles</creator><creatorcontrib>Yang, Fufang ; Ngo, Tri Dat ; Roa Pinto, Juan Sebastian ; Kontogeorgis, Georgios M. ; de Hemptinne, Jean-Charles</creatorcontrib><description>This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/j.fluid.2023.113778</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Activity coefficient ; Aqueous electrolyte solutions ; Chemical Sciences ; Density ; Environmental Sciences ; Equation of state ; Vapor–liquid equilibria</subject><ispartof>Fluid phase equilibria, 2023-07, Vol.570, p.113778, Article 113778</ispartof><rights>2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</citedby><cites>FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</cites><orcidid>0000-0001-5977-6928 ; 0000-0003-1607-3960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378381223000596$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://ifp.hal.science/hal-04073466$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Fufang</creatorcontrib><creatorcontrib>Ngo, Tri Dat</creatorcontrib><creatorcontrib>Roa Pinto, Juan Sebastian</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>de Hemptinne, Jean-Charles</creatorcontrib><title>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</title><title>Fluid phase equilibria</title><description>This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.</description><subject>Activity coefficient</subject><subject>Aqueous electrolyte solutions</subject><subject>Chemical Sciences</subject><subject>Density</subject><subject>Environmental Sciences</subject><subject>Equation of state</subject><subject>Vapor–liquid equilibria</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Ai-5euiajzZNDx6WxS9YUFDPYZpM2axdU5N2QX-9XSsevcwML-87zDyEXHA254yrq828aQfv5oIJOedclqU-IDOuyypjQuSHZMZkqTOpuTgmJyltGGO8UGJGuufP1OMWem8p7qAdxim809DQDiJsscfovyYNui4GsGtMtAmR9muk-PS0zJ4Xty90Gxy2Pzp8DBiGRKF9g9bT9Vgc0hTaYb8lnZGjBtqE57_9lLze3rws77PV493DcrHKrNSiz4AxkNq5oihy6wSzrK5UoUDUyqJWVV1IKJTTWALoutK10BaFrMuiqlkuUJ6Sy2nveIDpot9C_DQBvLlfrMxeYzkrZa7Ujo9eOXltDClFbP4CnJk9YLMxP4DNHrCZAI-p6ymF4xs7j9Ek6_HdovMRbW9c8P_mvwFzW4Zr</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Yang, Fufang</creator><creator>Ngo, Tri Dat</creator><creator>Roa Pinto, Juan Sebastian</creator><creator>Kontogeorgis, Georgios M.</creator><creator>de Hemptinne, Jean-Charles</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5977-6928</orcidid><orcidid>https://orcid.org/0000-0003-1607-3960</orcidid></search><sort><creationdate>202307</creationdate><title>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</title><author>Yang, Fufang ; Ngo, Tri Dat ; Roa Pinto, Juan Sebastian ; Kontogeorgis, Georgios M. ; de Hemptinne, Jean-Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a00a38dd5554cd20c0b9656a2b6ce869b53a56d8e7aa8b98b28ce23b759b042e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activity coefficient</topic><topic>Aqueous electrolyte solutions</topic><topic>Chemical Sciences</topic><topic>Density</topic><topic>Environmental Sciences</topic><topic>Equation of state</topic><topic>Vapor–liquid equilibria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Fufang</creatorcontrib><creatorcontrib>Ngo, Tri Dat</creatorcontrib><creatorcontrib>Roa Pinto, Juan Sebastian</creatorcontrib><creatorcontrib>Kontogeorgis, Georgios M.</creatorcontrib><creatorcontrib>de Hemptinne, Jean-Charles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Fufang</au><au>Ngo, Tri Dat</au><au>Roa Pinto, Juan Sebastian</au><au>Kontogeorgis, Georgios M.</au><au>de Hemptinne, Jean-Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions</atitle><jtitle>Fluid phase equilibria</jtitle><date>2023-07</date><risdate>2023</risdate><volume>570</volume><spage>113778</spage><pages>113778-</pages><artnum>113778</artnum><issn>0378-3812</issn><eissn>1879-0224</eissn><abstract>This work presents an analysis of various electrolyte SAFT model approaches through a rigorous benchmarking on extensively collected and critically evaluated databases. The primitive mean spherical approximation (MSA) and the Born equation are used respectively for the long-range ion-ion and ion-solvent interactions. For the short range interactions either dispersion, or association, or both (full) are used. Doing so, state-of-the-art parameter sets are obtained for the ePPC-SAFT model. Physical consistency is enforced for the parameters in the regression. Efforts are made to reduce the number of adjustable parameters with minimum loss of accuracy. This is done by analyzing the physical indication of the parameters, parameter sensitivity analysis, parameter trends, and trial-and-error. The model and parameter sets accurately represent the mean ionic activity coefficient (MIAC), vapor-liquid equilibria, and density, and accurately predict the osmotic coefficient extrapolated to temperature and salt composition ranges beyond the range of the MIAC data used in the regression. The ion-specific association strategies are found to be approximately as accurate as the salt-specific strategies, and are more accurate than the ion-specific dispersion and full strategies. Contributions of the model terms to the MIAC are analyzed. Temperature-dependence of the MIAC is discussed. The ion-specific association strategies successfully predicts the opposite relative magnitudes of the cation and anion individual ion activity coefficient of the aqueous NaCl and KCl solutions. The information is not included in model parameterization, while all the salt-specific strategies and ion-specific dispersion and full strategies fail. We recommend including the Wertheim association for the short-range ion-ion and ion-solvent interactions, and parameterizing SAFT models in an ion-specific manner using physically consistent parameters.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fluid.2023.113778</doi><orcidid>https://orcid.org/0000-0001-5977-6928</orcidid><orcidid>https://orcid.org/0000-0003-1607-3960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3812 |
ispartof | Fluid phase equilibria, 2023-07, Vol.570, p.113778, Article 113778 |
issn | 0378-3812 1879-0224 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04073466v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Activity coefficient Aqueous electrolyte solutions Chemical Sciences Density Environmental Sciences Equation of state Vapor–liquid equilibria |
title | Systematic evaluation of parameterization approaches for the ePPC-SAFT model for aqueous alkali halide solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20evaluation%20of%20parameterization%20approaches%20for%20the%20ePPC-SAFT%20model%20for%20aqueous%20alkali%20halide%20solutions&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Yang,%20Fufang&rft.date=2023-07&rft.volume=570&rft.spage=113778&rft.pages=113778-&rft.artnum=113778&rft.issn=0378-3812&rft.eissn=1879-0224&rft_id=info:doi/10.1016/j.fluid.2023.113778&rft_dat=%3Celsevier_hal_p%3ES0378381223000596%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378381223000596&rfr_iscdi=true |